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ABSTRACT

The project, entitled ,,Computational Control of Flexible Aerospace Systems", was

granted by NASA Langley Research Center (NAG-l-1436) started from January of 1992 and
continued for three years. The main objective of this project is to establish a distributed parameter

modeling technique for structural analysis, parameter estimation, vibration suppression and control

synthesis of large flexible aerospace structures.

The major focus of the first-year (1992) research was the distributed parameter modeling

of large flexible aerospace structures with complex configurations. As an example, the Low-

power Atmospheric Compensation Experiment (LACE) Satellite Model had been used as the
testbed and physical object. The main accomplishments can be summarized as foUows. A

physical research LACE Model with a 10 by 10 feet supporting frame had been built at NASA
LaRC. The classical modal test had been conducted on this model so that the natural frequencies

of the model were measured which were used to compare with the analytical results obtained from

the distributed parameter model of the LACE Model. A comprehensive dynamic formulation of

the distributed parameter model for tether-beam-rigid-body assembled structures by using transfer

matrix method had been systematically derived. Although the mathematical model must be

derived, depending on the feature of different satellite structures, the methodology developed in

the first-year research is definitely suitable for all tether-beam-rigid-body assembled structures.

The software PDEMOD were used to find the natural frequencies of the system. The analytical

values were c0mparable to the experimental results. A technical report entitled ,,Distributed

Parameter Formulation of LACE Satellite Model by Using Transfer Matrix Method" had

been submitted to NASA LaRCtu. A summary of the report had been presented at the 9th

VPI&SU Symposium on Dynamics & Control of Large Space Structuresr2v The last two-year

research was conducted on two phases. The first phase was the completion of the current version

of PDEMOD Code and its related documentation. The second phase was to analyze the dynamic

properties of a two-dimensional ground-based manipulator facility at the NASA Marshall Space

Fright Center (MSFC) under various configurations, and to develop a methodology for vibration

suppression of the end-effector by using distributed parameter modeling.

This report concentrates on the research outputs produced in the last two years. The main

accomplishments can be summarized as follows. A new version of the PDEMOD Code had been

completed based on several incomplete versions Mr. Taylor was working on just before he died.

The verification of the code had been conducted by comparing the results with those examples for

which the exact theoretical solutions can be obtained. A summary of the theoretical background

of the package along with the verification examples has been reported in a technical paper

submitted to the Joint Applied Mechanics & Material Conference, ASME, Los Angeles, June 28-

30, 1995t3r Correspondingly, a brief USER'S MANUAL had been compiled, which mainly

includes three parts: (1) Input data preparation, (2) Explanation of the Subroutines, (3)

Specification of control variables.



Meanwhile,a theoreticalinvestigationof theNASAMSFCtwo-dimensionalground-based
manipulatorfacility by usingdistributedparametermodelingtechniquehasbeenconducted. A
newmathematicaltreatmentfor dynamicanalysisandcontrolof largeflexiblemanipulatorsystems
hasbeenconceived,which mayprovidea embryonicform of amoresophisticatedmathematical
modelfor futuremodifiedversionsof thePDEMOD Codes. Thisresearchhasbeenreportedin

two technicalpaperst4.sl"

Ex ctrrrv SUMMARY

The common approach used in the analysis of structural dynamics and the interaction with

the control synthesis of large flexible aerospace structures is the finite element method. Although

the finite element method has been widely accepted, the significant limitations still exist. The

elements used in the finite element method are usually void of dynamics, such as massless axial
..... r_ use of the computational cost• _ of

springs. Th c . q .... .4_.- t,, acauire anatytxcai a_u_,,,.j. _eca equations, there
large flexible structures m o_u,_.... -_ solutions of large number of
and numerical inaccuracies involved in generating
is a practical limit to the accuracy of finite element dynamic models. The high order of the

structural model requires an "order reduction" process before a control system can be designed.

Seemingly unimportant modes can be inadvertently eliminated which prove later to be significant

to control system performance and stabilitYt61-

• Distributed parameter modeling is being seen to offer a viable alternative to the finite

element approach for modeling large flexible space structures. Distributed parameter models have

the advantages of improved accuracy, reduced number of modal parameters, the avoidance of

modal order reduction, and especiallY, the abEity to represent the structural and control system
of several flexible

dynamics in the same system of equations. Continuum models have been made Solar Array Fright

Station Freed°ratio]' and recently, the Low-space structures, which include the Spacecraft Control Laboratory (scOLE)t71'

Experimentts], NASA Mini-Mast Trusstgl, the Space
power Atmospheric Compensation Experiment (LACE) Satellite Modelr2]" A computer software

package aiming at performing structural analysis and control system synthesis had been initialized

and is primarily completed for its basic functions.

The software package pDEMOD was initialized by Dr. Lawrence W. Taylor, Jr. at NASA

Center during the middle of the 1980's. The first release of his work o_....
Langley structural dynamics ° g J h:P m _ rala_?tcernef:g°ufrate: nPs i • " tI DEMOD package was in 1987ti .,2.  er
model the
parameter approach. A system of partial differential equations is formulated and connected at
their boundaries. The equations of motion for anY number of rigid bodies are written in the

frequency domain and in terms of the coefficients of the sinusoidal and hyperbolic functions which

comprise the mode shapes. Distributed parameter models can, therefore, be generated for any

three dimensional configurations describable by partial differential equations joined at their

boundaries. The manual labor of generating such models is therefore avoided.



Becauseof Dr. Taylor'ssuddenpassingaway, it becomesaurgenttaskto summarizeand
sifthis researchachievements,andmakeit availableto theotherresearchers.With theNASA' s
support,anewversionof thepDEMODcode hasbeencompletedduringthepasttwo yearsbased

of thetheoreticalbackgroundof the

incompleteversionsof Dr. Taylor. A summary n re orted in a technical paperm.
on several . verification examples .has b_ ed _s an assembly of flexib!e b e_n. 1
•-,acka_e along with the .... s,-ace structure is consider ---._ b" four indepenaent p .aru_u

e" -____.:1,, _ comvlex large a___ e....... element is represent_ ;summ_u_J, - -" ," - Each tleratne uca, l, ,, axial deformation, and torsion.

dementS and rigid boale_. connected at the elements
differential equations which exhibit lateral bending in two axes, of motion for any number of
A system of partial differential equations is then formulated and

boundaries based on the compatibility conditions. The equati°nSof the mode shape parameterof single beam dement can be
rigid bodies are written in the frequency domain and in termsthe corresponding pDE' s, further
coefficientS- The deflectionS, forces and moments for both ends a

coefficients• Distributed parameter
described in terms of the spatial derivatives of the solutions of

configurations describable by pDE' s
expressed in terms of the same set of mode shape parameter

can therefore be generated for any three-dimensiona} ..... ;a e an opportunity to more

models • boundaries An accomplishment of this task may p_u_,,, .
Joined at their ..'..Luted ,,arameter modeling techmques to a variety of aerospace

J_esearchers to apply dlSmO e
those

structures.

The verification of the Code has been conducted by comparing the results with

examples for which the exact theoretical solutions can be obtained. Four verified examples were

included in the package: Example 1 - Bending of a Cantilevered Beam; Example 2 - Bending of

Clamped_Clamped Beam; Example 3 - Bending of a Cantilevered Beam with a Tip-Mass M;

a mpiled, which mainly includes three parts: (1) Input data preparation, (2) Explanation of"bEXeena_e 4 - T°rsi°n °f a Cantilevered Beam" Correspondingly, a brief USER' S MANUAL' had

the Subroutines, (3) Specification of control variables.

By investigating the potential of the distributed parameter modeling technique, Dr. Taylor

and the other researchers expected that the PDEMOD may be further developed in the following

aspects: (1) structural dynamics, modal frequencies and mode shapes; (2) parameter estimation

of modal characteristics; O) structur_ damping; (4) control system dynamics; and (5) design

optimization. But, only the first of the program had been completed and included in the current

package. To extend the functions of the current package, a massive research is being conducted,

which suggests to modify the mathematical model and global system generating P r°ceduretS'91, tosin the coefficients of the solution
• Instead of u g onvenient way

_ ^_ ¢,,r control syntheslst4._4._sr _ ........ _A,_ a much more c
develon methodology .... . -,-_ used finally, wmcn ptu, ....
functions, the transfer matrix may uc from one point of the structure to the other.

to describe the state-vector transition

These tentative ideas have been included in the second-phase research. A theoretical

investigation of the NASA MSFC two.dimensional ground-based manipulator facility by using

distributed parameter modeling technique has been conducted- The MSFC facility is planned to

conduct research in the berthing operation and, in general, research into the control of multibody

configurations that are loosely coupled with flexible manipulator linkagest_tv A new mathematical

treatment for dynamic analysis and control of large flexible manipulator systems has been



conceived,whichmayprovidea embryonicform of a moresophisticatedmathematicalmodd for
future modified versionsof the PDEMOD Codes. This researchhasbeen reported in two

technicalpaperst4.5_"

The enclosuresof this

ENCLOSURES

report are listed as follows,
which represent the research

accomplishments of this project.

1. uhsEPRDsEIMIAO_CAde and the computed results for four verified examples; Estimation

2. Reference Paper 3: "PDEMOD - A Computer Program for Distributed Parameter
3.
of Flexible Aerospace Structures, Part I: Theory and Verification";
4. Reference Paper 4: "A Method of Superposing Rigid-Body Kinematics and Flexible Deflection

for End-Effector Vibration Suppression of a Large Flexible Manipulator System".

SUGGESTION TO FUTURE RESEARCH

As mentioned before, the PDEMOD may be further developed in the following aspects:

(1) structural dynamics, modal frequencies and mode shapes; (2) parameter estimation of modal

characteristics; (3) structural damping; (4) control system dynamics; and (5) design optimization.

To do so, the following two significant modifications will be necessary. First, the mathematical

model supporting the current version of the PDEMOD Code must be modified. In current

mathematical model, the equations of motion for any number of rigid bodies were written in terms

of the mode shape parameter coefficients of the corresponding beam dements where the rigid

bodies were attached. In other words, the state variables were chosen as the coefficients of the

sinusoidal and hyperbolic functions which comprise the solutions of the corresponding PDE' s.

This model is not suitable for control synthesis. Instead of using the coefficients of the solution

functions, the transfer matrix may be used, which provides a much more straightforward way to

describe the state-vector transition from one point of the structure to the other, directly using

deflections, slopes, forces and moments at both ends of individual beam element as state variables.

Since deflections are the controlled variables and forces and moments are the motivating variables,

choosing them as state variables are definitely more suitable for control purpose.

Second, the package must include system identification and parameter estimation as an

important part of the whole procedure. In general, the model used in distributed parameter

analysis is actually an equivalent model of the real structure described by a set of PDE' s. To keep

the equivalency, a reasonable criterion to judge the equivalency must be properly set up first. The

criterion used in current version of the PDEMOD was to keep the equivalency in the sense that

the static stiffness were approximately equal between the distributed parameter model and the real

structure. The equivalent parameters of the distributed parameter model, such as, mass, stiffness,

radius of gyration, etc., were then determined based on this criterion. Further, the characteristic



equationis solvedto obtainthedynamicpropertiesof thestructure. However, thestiffnessof a• usuallyrelatedto the frequencies•Thestaticequivalencycannot guarantee
,.nmolex structure ts ..... ,-_1 d error may arise. To correct the errors, current pDEMOD
....... ;n o_,,,_--_, an experimentally measured frequencies

dynamic eqmvalency • _, the user's
package adjusted the equivalent parameters based on some
without specified mathematical algorithm. This correction is largely dependent on

experience, different users obtain different results at times. To overcome this deficiency, it is

necessary to provide an algorithm to precisely define the dynamic equivalency, such as maximum

likelihood estimator•
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_TRODUCTION

The software package PDEMOD was initialized by the late Lawrence W. Taylor, Jr. at

NASA Langley Research Center during the middle of the 1980's. The first release of his work on

t'DEMOD package was in 1987. PDEMOD was initially developed to model the structural

dynamics of general spacecraft configurations by using the distributed parameter approach, which
consists of three-dimensional network of flexible beams and rigid bodies. The building blocks

from which three-dimensional configurations can be constructed consist of (1) beams, which have

bending in two directions, torsion, and elongation degrees of freedom, and (2) rigid bodies, which

are connected by any network of beam elements. The full six degrees of freedom are allowed at

either end of the beam. Rigid bodies can be attached to the beam at any angle or body location.

The modified Bernoulli-Euler beam equation is used to represent the bending and the wave

equations for torsion and elongation.
A system of partial differential equations (PDEs) is formulated and connected at the

elements' boundaries based on the compatibility conditions. The equations of motion for any

number of rigid bodies are written in the frequency domain and in terms of the coefficients of the

sinusoidal and hyperbolic functions which comprise the mode shapes. The force and moment

vectors for both ends of a single beam element can be described in terms of the spatial derivatives

of the solutions of the corresponding PDE's. Distributed parameter models can therefore be

generated for any three-dimensional configurations describable by PDEs joined at their

boundaries. The manual labor of generating such models is therefore avoided.

Because of Dr. Taylor's sudden demise, it becomes an urgent task to summarize his

research achievements and make them available to the other researchers. This work is being

continued and this review may provide an opportunity to more researchers to apply distributed

parameter modeling techniques to a variety of aerospace structures. The verification of the code
has been conducted by comparing the results with those examples for which the exact theoretical

solutions can be obtained, for instance, a simple beam with various boundary conditions, etc.

The theoretical derivation of the formulation and the verification of the code have been

included in Shen, et al.tq. This USER'S MANUAL concentrates on the explanation of the

package itself. The package PDEMOD mainly includes three parts: (1) Input data, which

specifies structural configuration, mechanical properties of the consisting beams and rigid bodies,

and the natural frequency range one would like to search, etc., (2) Main body of the package,

which conducts the calculation specified by the formulation developed in Shen, et al.tl 1. and (3)

Subroutines necessary for completing the calculation. Since the formulation has been clearly

described in Shen, et al.tx 1, this Manual emphasizes the first and the third parts. It should please

the user to know that it is necessary to read Shen, et al.t_l, before reading this Manual. The user

should begin by solving some of the example problems given in Shen, et al.tq. The user should

then proceed to work on their own complex problems.
The USER'S MANUAL and Shen, et al.tq are the basic technical specification reference

documents for the PDEMOD package. Although these two reference documents are sufficient

for some users, other references, e.g. [3-14], will give more details of this package. It is our

recommendation that users review as many of these references as possible to gain a thorough

understanding of the PDEMOD package.

2



Neither the late Lawrence W. Taylor, Jr., nor his working colleagues, the compilers of this

package and the authors of some of the related papers, assume any responsibility for the validity,

accuracy, or applicability of any results. Users must verify their own results.
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USER'S GUIDE

A. SUBROUTINES:

There are 17 subroutines in the package PDEMOD. The subroutines used in PDEMOD

can be categorized as two types. The nine common-purpose subroutines (TYPE-I

SUBROUTINES) are contained in a SUBROUTINE LIBRAP, Y called "LODLIB.F", which is

the selected part of the SUBROUTINE LIBRARY "SYSPAC" (SYStems analysis programs

PACkage) at NASA Langley Research Center (LaRC)t21. The SYSPAC is a data base at LaRC

for the purpose of making experimental data and a selection of analysis algorithms available to

interested researchers studying aerodynamics, flight mechanics, structural dynamics and system

identification. The other eight subroutines (TYPE-II SUBROUTINES) are not included in

SYSPAC and are programmed specifically for PDEMOD. Their format is consistent with those

of the TYPE-I SUBROUTINES.
All vectors and matrices used in the subroutines are expressed in a vector form, and have a

common format. The first four elements of each vector are respectively: (1) the number of rows,

(2) the number of columns, (3) the total number of elements, and (4) the data time interval. This
format allows matrix information to be readily accessible in programming data analysis

procedures, for calling numerous subroutines, in printing and in plotting. The 17 subroutines in

PDEMOD are described as follows.

TYPE-I SUBROUTINES:

1. SUBROUTINE ADD (P, A, Q, B, C)

Description: Two compatible matrices (A and B) are multiplied by scalars (P and Q,

respectively) and then added: C=P*A+Q *B-

2. SUBROUTINE MULT (A, B, C)

Description: Multiplies two matrices: C=A*B.

3. SUBROUTINE MAKE (A, B)

Description: Copies B in A: A=B.

4. SUBROUTINE SET (A, II, J J)

Description: Creates a null matrix with II rows and JJ columns: A=[0].

5. SUBROUTINE SPIT (A, B)

Description: Labels and lists a matrix.

6. SUBROUTINE TRANS (A, B)

Description: Generates a matrix transpose: B=A T.

7. SUBROUTINE TILDA (A, B)

Description: Forms the matrix equivalent of a cross product from a vector {A}3,1,

4
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.
SUBROUTINE JUXTV (A, B, C)

Description: Combines by juxtaposition two compatible matrices in a vertical direction:

C= BJ

9. SUBROUTINE [DENT (A, II)

Description: Forms an identity matrix A with dimension II.

TYPE-H SUBROUTINES:

10. SUBROUTINE AFORM ON, A, BODREF, CONFIG, L, P, Q, R, T, INRT, MASS,

DUM, DUN, DUO, DUP)

Description: Forms the system matrix A. (See Shen, et al.ttl, Eq.34)

11. SUBROUTINE BODFORM (CONFIG, NBEAM, BODREF, NBODY)

Description: Determines rigid bodies' connectivity and the reference coordinate systems.

12. SUBROUTINE PFORM (W, L, Z, EIX, ElY, EAZ, El:P, MPL, IPL, FZ, AGKX,

AGKY, PF, PM)

Description: Forms the matrices PF and PM (see Shen, et al.tl 1, Eqs.16 and 17).

13. SUBROUTINE QFORM (W, L, Z, EIX, ElY, EAZ, EIP, MPL, IPL, FZ, AGKX,

AGKY, QU, QS)

Description: Forms the matrices Q. and Q, (see Shen, et al.tl 1, Eqs. 14 and 15).

14. SUBROUTINE PQFORM ON, L, E, P, Q, DUM, DUN)

Description: Combines the matrices P and Q, respectively, by juxtaposition for multi-body,

multi-beam system.

15. SUBROUTINE UPPER (A, DETA)

Description: Determines the determinant of the matrix A by transforming it as a upper

triangular matrix.

16. SUBROUTINE DIAG (A, SHAPE)

Description: Diagrams the mode shapes.

17. SUBROUTINE WSEARCH (W, DW, A, DETNEW, DETOLD, WI)

Description: Search for the values of circular natural frequencies.



B. VARIABLES AND ARRAYS:

There are a number of variables and arrays

below:

are used in PDEMOD.. They are defined

VARIABLES:

NBEAM: Number of beams.

NBODY: Number of rigid bodies.
NA=12*NBEAM, where the number 12 indicates that there are 12 unknown coefficients for each

beam element (see Shen, et al.tl 1, Eq. 13).

Li: Length of the ith beam.,

EIXi: Bending rigidity (EIx) of the ith beam.

E1-Yi: Bending rigidity (EIy) of the ith beam.

Ell'i: Torsional rigidity (GIp) of the ith beam.

EAZi: Axial rigidity (EAz) of the ith beam.

MPLi: Mass per length of the ith beam.

IPLi: Mass moment of inertia per length Of the ith beam.

FZi: Initial tensile force for the ith tether element.

AGKXi: Radius of gyration about x-axis of the cross-section area of the ith beam.

AGKYi: Radius of gyration about y-axis of the cross-section area of the ith beam.

MASSi: Mass of the ith rigid body.

W: Circular natural frequency.

WINC: Increment of the value of W for iteration.

NIW: Specified number of iteration.

ARRAYS:

CONFIG (NBEAM, 3): Denotes the structural configuration: Column No. l=Beam Identification

Number (ID); Column No.2=inboard Body Identification Number; Column No.3=Outboa rd Body

Identification Number. A negative sign "-" prior to the numbers in columns 2 and 3 indicates

which beam is used to define body axes. For example, a two-beam, three-body system is shown

in Figurel. The definitions of"Inboard Body" and "Outboard Bod3," are depicted at the right-

hand sides of the body ID Numbers. The 2 by 3 matrix CONFIG for this example is numbered as

shown in the Tablel.

Table 1

Beam's ID

1

2

Example of the Matrix CONFIG

Inboard Body's ID Outboard Body's ID

-1 -2

2 -3

6



) Body3

Beam2

) Body2

Beam 1

Body 1 (Earth)

Figure 1 Two-Beam,

-- Outboard Body of Beam 2

_ Inboard Body of Beam 2
Outboard Body of Beam 2

--- Inboard Body of Beam 1

Three-Body System

The negative signs prior to the numbers located at (1, 2) and (1, 3) indicate that both bodies 1 and

2 are defined in the beam l's coordinate system, while the negative sign prior to the number

located at (2, 3) indicates that body 3 is defined in the beam 2's coordinate system.

BODREF (NBODY, 2): Defines body's connectivity and reference coordinate. The number of

rows of BODREF equals to the number of bodies. Each row provides the connectivity

information of the corresponding body, consecutively. Column No. 1 indicates the beam's ID, the

connected body uses this beam's coordinate system as the reference system. Column No.2

indicates the mutual location between the body and the reference beam. If the body is the inboard

body of that beam, the number equals to zero and if'the body is the outboard body of that beam,

the number equals to one, Note that BODREF is not a input array. All the numbers will be

produced by calling SUBROUTINE BODFORM. In fact, CONFIG has provided all necessary

information.

RiI (3, 3): The eccentric matrix at the attachment point between the ith beam and its inboard

body.

RiO (3, 3): The eccentric matrix at the attachment point between the ith beam and its outboard

body.

R (4+18"NBEAM): The eccentric matrix containing all of matrices, by juxtaposition: RiI and

RiO, i=l, NBEAM.

Ti (3, 3): The coordinate-transformation matrix.

INRTi (3, 3): The mass-moment-of-inertia matrix of the ith body.

INRT (4+9*NBODY): The mass-moment-of-inertia matrix containing all of INRTi matrices,

i= 1, NBODYI by juxtaposition.

E (4+9"NBEAM): Beams' mechanical-property matrix. The first four elements are used for the

common purpose as mentioned before. Each consecutive nine numbers represent one beam's

7



mechanicalproperties,respectively,that is: E(5)=EIX1, E(6)=EIY1, E(7)=EAZ1, E(8)=EIP1,
E(9)=MPL1,E(10)=IPL1,E(I 1)=FZ1,E(12)=AGKX1, E(13)=AGKY1, andso on.

MASS (4+NBODY): Body's mass matrix.

p [4+(3,q2)_NBEAM]: Forms matrix P which consists of all the matrices PF and PM for each

beam element consecutively by juxtaposition (see Shert, et al.il ], Eqs.16 and 17). Expressed in

matrix form, the matrix P is constructed as

[Pvl ]3_12iFor[P., ]3_12 Beaml

[Pl= [P.,]3_12 For Beam2

L:J •
Q [4+(3*12)*NBEAM]: Forms matrix Q which consists of all the matrices Q.. and Q, for each
beam element consecutively by juxtaposition (see Shen, et al.ta ], Eqs.14 and 15). Expressed in

matrix form, the matrix Q is constructed as

[-[O,, ]3xl_']

[Os. I ]3x12 I FOr

[OU, ]3x12 l[_] = [_s213×12 For

"J

Beaml

Beam2

A [4+(12"NBEAIV0"(12"NBEAM)]: Forms system matrix A which consists of all the matrices

AF and AM for each beam element consecutively by juxtaposition, while the matrices AF and AM

are constructed by the element matrices PF, P_t, Q,, and Q, in the way indicated in Shen, et al.o],

Eq.33.

DETOLD, and DETNEW [4+(12"NBEAM)*(12*NBEAM)]: Determine the determinant of

the system matrix A by iteration. DETOLD is the previous one, while DETNEW the up-dated
one. When the value of the determinant is small enough to be considered as zero, the

corresponding natural frequency is found.

C. CONTROL VARIABLES:

NPROB: The problem number the user chooses to solve. If NPROB=I, then PROBLEM #1 is

solved, and so forth. The current version of PDEMOD has encluded four verification examples:



EXAMPLE 1- Bendingof a CantileveredBeam;EXAMPLE 2 - Bendingof aClamped-Clamped
Beam;EXAMPLE 3 - Bending of a CantileveredBeamwith a Tip-MassM; EXAMPLE 4 -
Torsion of a CantileveredBeam. User canaddhis own problemsinto the packageand assign
correspondingproblemnumbers.

IFREQ: Indexfor conductingnaturalfrequencyanalysis.If IFREQ=I, thenaturalfrequencyof
thesystemwill becomputed.

ISHP: Indexfor conductingmodeshapeanalysis.If ISI_=I, themodeshapefunctionswill be
computed.

D. SPECIAL NUMBERS:

The following special numbers are used in the package to define some boundary

conditions, null mass, or infinite mass, etc., so that the tedious modal reconstruction can be

avoided.

1. For a null mass, or an imaginary mass, MASSi, at the free end of a cantilevered beam, the

package defines MASSi=0.9 "10s- Correspondingly, the diagonal elements of its mass-moment-
of-inertia matrix INRTi should be defined as the same number (0.9"10s).

2. For infinite mass, such as, the mass of the foundation of a cantilevered beam, MASSi, the

package defines MASSi=999999999.0 Correspondingly, the diagonal elements of its mass-
moment-of-inertia matrix INRTi should be defined as the same number (999999999.0).

3. For restrictions of one-direction deflection, e.g., bending about x-axis, the package defines that

the rigidity to resist the deflection in this direction approaches infinity, i.e., EIXi=999999999.0.

4. For the elements except tether element, the package defines the initial tensile force FZi=0.0.
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PDEMOD Program.

Computer-Printout Codes



123

543

707

777

C

C

C

C

C

C

C

C
C

PROGRAM PDEMODI

INTEGER BODREF, CONFIG, OBODY
REAL INRTI, INRT2, INRT3, INRT4, MASS1, MASS2, MASS3, MASS4,

ILl, L2, L3,MPLI,MPL2,MPL3,MASS,
2IPLI, IPL2, IPL3, L, INRT, INRTI, INTRO
DIMENSION DUM(1300), DUN(1300), DUO(1300),DUP(1300),

2 INRTI (13 ), INRT2 (13 ), INRT3 (13 ), INRT4 (13 ),

3RII (13) ,RIO (13), R2I (13), R20 (13), R3I (13) ,R30 (13),

4E (40) ,A (2004), DETOLD (40), CONFIG (5,3),
5DETNEW(40),BWI(S),BW2(8),BW3(8),

7PF(40),PM(40),R(94),

8WI (1300) ,FI (1300) ,L(9),
9MASS (14), INRT (69) ,BW(34), TBODY (13), TBEAM (13) ,QU(40) ,QS (40)
DIMENSION RI(13),RO(13),INRTI(13),INRTO(13),P(436)'Q(436)'

ITIT (13), TRT (13), BODREF (i0,2) ,RI (13), CGI (7) ,CGTOT (7),

2TI(13),SHAPE(2004),XJI(2004),DI(454)'

3DELF(40) ,DELC(40),

4T(69),TI(13),T2(13),T3(13)
FORMAT(28H THE SYSTEM MATRIX WILL HAVE, I3,16HROWS AND COLUMNS)

FORMAT (415, El5.5)

FORMAT (7E14.5 )

FORMAT (7Ii0)

USER CAN CONTROL WHICH PROGRAM FUNCTIONS ARE ACTIVE(=1), AND NOT(=0)

IFREQ=I
ISHP=0

USER MUST SELECT THE PROBLEM NLIM_ER DESIRED, i. e.NPROB=I, etc.

PROBLEM #i IS THE CANTILEVER BEAM BENDING;
PROBLEM #2 IS THE CLAMPED-CLAMPED BEAM BENDING;

PROBLEM #3 IS THE CANTILEVERED BEAM BENDING WITH A TIP_MASS;

PROBLEM #4 IS THE CLAMPED-CLAMPED BEAM TORSION.

NPROB=2

if(nprob.eq.l) goto i001

if(nprob.eq.2) goto 1002
if(nprob.eq.3) goto 1003

if(nprob.eq.4) goto 1004

C

c-PROBLEM i: **********

C

i001

C
C

C

C

C

C

C

C

140

163

CONTINUE
PROBLEM #I is the CANTILEVERED BEAM BENDING (nbeam=l).
THE MATRIX "CONFIG" DENOTES THE STRUCTURAL CONFIGURATION

COL#1=BEAM I.D., COL#2-INBOARD BODY I.D., COL#3=OUTBOARD BODY
NEGATIVE SIGN ..... DENOTES WHICH BEAM IS USED TO DEFINE BODY AXES.

For the CANTILEVERED BEAM, BEAM1 links the Bodyl (EARTH) to

Body2 (a Null-mass). Bodyl uses the Inboard end of Beaml to
define its axes. Body2 uses the outboard end of Beaml to define

its axes.

CONFIG(I,I)=I

CONFIG(I,2)=-I
CONFIG(I,3)=-2

NBEAM=I

DO 140 IBEAM = I,NBEAM
PRINT 777, CONFIG(IBEAM, I),CONFIG(IBEAM, 2),CONFIG(IBEAM, 3)

NA=I2*NBEAM
CALL BODFORM(CONFIG,NBEAM,BODREF,NBODY)

DO 163 I = I,NBODY
PRINT 777,I,BODREF(I,I),BODREF(I,2)

CALL SET(WI,100,1)

WI (i) =0.
INPUT FOR BEAM#l, BODY#1 INBOARD AND BODY#2 OUTBOARD

LI=I30.
EIXI=40000000.

EIYI=999999999.0



EIPI=999999999 .0
MPLI=. 09556
IPLI=.2907
EAZI=999999999.0
FZI=0.
AGKXI=999999999 .
AGKYI=999999999 .
CALL SET(RII,3,1)

RII (5) =0.

RII(6)=0.
RII(7)=0.

CALL TILDA(RII, DUM)

CALL MAKE (RII, DUM)

CALL SET(RIO,3,1)

RIO (5) =0.0

RIO (6)=0.0

RIO(7)=0.0
CALL TILDA (RIO, DUM)

CALL MAKE (RIO, DUM)

CALL SET(TI,3,3)

Tl(5)=l.
TI(9)=I.

TI(13)=I.
C INPUT FOR BODY#l, THE FIXED END, THE

MASSI=999999999 .0

CALL SET(INRTI,3,3)

INRTI (5) =999999999 .0
INRTI (9) =999999999 .0

INRTI (13) =999999999.0

PRINT 707,MASS1

INPUT FOR BODY#2, THE NULL-MASS.
MASS2=0. 00000009

CALL SET(INRT2,3,3)

INRT2 (5) =0. 00000009

INRT2 (9) =0. 00000009

INRT2 (13) =0. 00000009
PRINT 707, MASS2

CALL SET (E, NBEAM, 9 )

E (5 )=EIXl

E (6 )=EIYI

E (7) =EAZI

E (8 )=EIPI

E (9 )=MPLI

E (i0) =IPLI
E(II)=FZl

E (12 )=AGKXI

E (13 )=AGKYI

CALL SET (L, NBEAM, I)

L(5) =LI

CALL SET (MASS, NBODY, i)

MASS (5 )=MASS1

MASS (6 )=MASS2

CALL MAKE (INRT, INRTI )

CALL JUXTV (INRT, INRT2, INRT)

CALL MAKE (T, T1 )

CALL MAKE (R, R11 )

CALL JUXTV (R, RIO, R)
W=4 .0

WINC=I. 01
NIW=600

GO TO i000

C

-PROBLEM 2: **********
C

1002 CONTINUE

C PROBLEM #2 is the CLAMPED_CLAMPED BEAM

EARTH.

BENDING (nbeam= 1 ) .



C
C
C
C

C

240

263

C

C

C

THE MATRIX "CONFIG" DENOTES THE STRUCTURAL CONFIGURATION

COL#1=BEAM I.D., COL#2-INBOARD BODY I.D., COL#3=OUTBOARD BODY
NEGATIVE SIGN ..... DENOTES WHICH BEAM IS USED TO DEFINE BODY AXES.

For the CANTILEVERED BEAM, BEAM1 links the Bodyl (EARTH) to

Body2 (EARTH,EITHER). Bodyl uses the Inboard end of Beaml to
define its axes. Body2 uses the outboard end of Beaml to define

its axes.

CONFIG (i, i) =i
CONFIG (i, 2) =-i

CONFIG (i, 3) =-2
NBEAM= 1

DO 240 IBEAM = I,NBEAM

PRINT 777, CONFIG (IBEAM, 1 ) ,CONFIG (IBEAM, 2 ) ,CONFIG (IBEAM, 3 )
NA= 12 *NBEAM

CALL BODFORM (CONFIG, NBEAM, BODREF, NBODY)

DO 263 I = I,NBODY

PRINT 777,I,BODREF(I,I),BODREF(I,2)

CALL SET(WI,100,1)

wi (i)=0.
INPUT FOR BEAM#l, BODY#1 INBOARD AND BODY#2 OUTBOARD

LI=I30.

EIXI=40000000.

EIYI=999999999.0

EIPI=999999999.0

MPLI=. 09556

IPLI=.2907

EAZI=999999999.0

FZI=0.
AGKXI=9999.

AGKYI=999999999.

CALL SET(RII,3,1)

RII (5) =0.

RII (6) =0.

RII (7) =0.
CALL TILDA (RII, DUM)

CALL MAKE (RII, DUM)

CALL SET(RIO, 3,1)

RIO (5) =0.0

RIO(6)=0.0

RIO(7)=0.0
CALL TILDA(RIO, DUM)

CALL MAKE (RIO, DUM)

CALL SET(TI,3,3)

TI(5)=I.

TI(9)=I.

TI(13)=I.

INPUT FOR BODY#l, THE
MASSI=999999999.0

CALL SET(INRTI,3,3)

INRTI (5) =9999999.0

INRTI (9) =9999999.0

INRTI (13) =9999999.0

PRINT 707,MASS1

INPUT FOR BODY#2, THE
MASS2=999999999.0

CALL SET(INRT2,3,3)

INRT2 (5) =9999999.0

INRT2 (9) =9999999.0
INRT2 (13) =9999999.0

PRINT 707,MASS2

CALL SET (E, NBEAM, 9 )

E (5 )=EIXl

E (6 )=EIYI

E (7) =EAZI

E (8 )=EIPI

E (9 ) =MPLI

FIXED END, THE EARTH.

NULL-MASS.



E (i0) =IPLI
E (ii) =FZI
E (12 ) =AGKXI
E (13 ) =AGKYI
CALL SET (L, NBEAM, i)

L(5) =LI
CALL SET (MASS,NBODY, i)

MASS (5 )=MASS1

MASS (6 )=MASS2
CALL MAKE (INRT, INRTI )

CALL JUXTV (INRT, INRT2, INRT)

CALL MAKE (T, TI)

CALL MAKE (R, RII)
CALL JUXTV (R, RIO, R)

W=25.0

WINC=I. 01

NIW= 300
GO TO i000

C

c-PROBLEM 3 **********

C

1003

C

C

C

C

C

C

C

C

C

340

363

C

CONTINUE
PROBLEM #3 is the CANTILEVERED BEAM BENDING (nbeam=l) with a

TIP-BODY CONNECTED.
THE MATRIX "CONFIG" DENOTES THE STRUCTURAL CONFIGURATION

COL#1=BEAM I.D., COL#2-INBOARD BODY I.D., COL#3=OUTBOARD BODY

NEGATIVE SIGN "-" DENOTES WHICH BEAM IS USED TO DEFINE BODY AXES.

For the CANTILEVERED BEAM, BEAM1 links the Bodyl (EARTH) to

Body2. Bodyl uses the Inboard end of Beaml to
define its axes. Body2 uses the outboard end of Beaml to define

its axes.

CONFIG (i, i) =i

CONFIG(I, 2) =-i
CONFIG (i, 3) =-2

NBEAM= 1

DO 340 IBEAM = I,NBEAM
PRINT 777, CONFIG (IBEAM, i) ,CONFIG (IBEAM, 2 ) ,CONFIG (IBEAM, 3 )

NA=I2 *NBEAM
CALL BODFORM (CONF IG, NBEAM, BODREF, NBODY)

DO 363 I = I,NBODY
PRINT 777,I,BODREF(I,I),BODREF(I,2)

CALL SET(WI,100,1)

WI (i) =0.
INPUT FOR BEAM#l, BODY#1 INBOARD AND BODY#2 OUTBOARD

LI=3.077
EIXI=I75.9644

EIYI=999999999 .0

EIPI=999999999 .0

MPLI=0. 012

IPLI=I. 0el0

EAZI=999999999.0

FZI=0.

AGKXI=999999999 •

AGKYI=999999999 •

CALL SET(RII,3,1)

RII (5) =0.

RII (6)=0.

RII (7)=0.
CALL TILDA(RII, DUM)

CALL MAKE (RII, DUM)

CALL SET(RIO,3,1)

RIO(5):0.0

RIO(6)=0.0

RIO (7) =-0.07

CALL TILDA(RIO, DUM)

CALL MAKE (RIO, DLTM)



C

C

CALL SET(TI,3,3)
TI(5)=I.
T1 (9) =I.
T1 (13) =i.
INPUT FOR BODY#l, THE

MASSI=999999999.0

CALL SET(INRTI,3,3)

INRTI (5) =999999999.0

INRTI (9) =999999999.0

INRTI (13) =999999999.0
PRINT 707,MASS1

INPUT FOR BODY#2, THE

MASS2=4. 952/32.2
CALL SET(INRT2,3,3)

INRT2 (5) =2.341e-4

INRT2 (9) =2.341e-4
INRT2 (13) =i. 524e-3

PRINT 707,MASS2

CALL SET (E, NBEAM, 9 )

E (5 )=EIXl

E (6 )=EIYI

E (7) =EAZI
E (8) =EIPI

E (9 ) =MPLI

E (i0) =IPLI

E(II) =FZI

E (12 )=AGKXI

E (13 )=AGKYI
CALL SET (L, NBEAM, i)

L (5 )=LI
CALL SET (MASS, NBODY, i)

MASS (5) =MASSl

MASS (6) =MASS2
CALL MAKE (INRT, INRTI )

CALL JUXTV (INRT, INRT2, INRT)

CALL MAKE (T, TI)

CALL MAKE (R, RII)

CALL JUXTV (R, RIO, R)

W=I0.0
winc=l. 01

niw=150

GO TO i000

c
c-PROBLEM 4 **********

CLAMPED_END, THE EARTH.

REFLECTOR.

c
1004 CONTINUE
C PROBLEM #4 is the TORSION Of A CLAMOED-CLAMPED BEAM (nbeam=l)

c WITHOUT BODY CONNECTED.
C THE MATRIX "CONFIG '° DENOTES THE STRUCTURAL CONFIGURATION

C COL#1=BEAM I.D., COL#2-INBOARD BODY I.D., COL#3=OUTBOARD BODY

C NEGATIVE SIGN ..... DENOTES WHICH BEA/_ IS USED TO DEFINE BODY AXES.

c For the CANTILEVERED BEAM, BEAM1 links the Bodyl (EARTH) to

c Body2(another clamped end). Bodyl uses the Inboard end of Beaml to
c define its axes. Body2 uses the outboard end of Beaml to define

C its axes.

CONFIG(I,I)=I
CONFIG(I,2)=-I

CONFIG(I,3)=-2

NBEAM=I

DO 440 IBEAM = I,NBEAM

440 PRINT 777,CONFIG(IBEAM, I),CONFIG(IBEAM, 2),CONFIG(IBEAM, 3)

NA=I2*NBEAM
CALL BODFORM(CONFIG,NBEAM,BODREF,NBODY)

do 463 i=l,nbody

463 print 777, i,bodref(i,l),bodref(i,2)

CALL SET(WI,100,1)



C

C

C

WI (i)=0.
INPUT FOR BEAM i, BODY#1 INBOARD,
LI=I30.
EIXI=999999999 . 0
EIyl=999999999 .0
EIpl=400000000 • 0
MPLI=0 .09556
IPLI=. 2907
EAZI=999999999 . 0
FZI=0 .
AGKXI=999999999 . 0
AGKyI=999999999.0
CALL SET(RII,3,1)
RII (5) =0.

RII (6) =0.

RII (7) =0.
CALL TILDA (RII, DUM)

CALL MAKE (RII, DUM)

CALL SET(RIO,3,1)

RIO (5) =0.

RIO (6) =0.

RIO (7) =0.
CALL TILDA (RIO, DUIK)

CALL MAKE (RIO, DUM)

CALL SET(TI,3,3)

TI(5)=I.
TI(9)=I.

TI(13)=I.
INPUT FOR BODY 1 (one clamped end)

MASSI=999999999.

CALL SET(INRTI,3,3)

INRTI (5) =999999999.0

INRTI (9) =999999999.0

INRTI (13) =999999999.0

PRINT 707, MASS1
INPUT FOR BODY 2 (another clamped

MASS2=999999999.0

CALL SET(INRT2,3,3)

INRT2 (5) =999999999.0

INRT2 (9) =999999999.0

INRT2 (13) =999999999.0

PRINT 707, MASS2

CALL SET (E, NBEAM, 9 )

E (5 )=EIXI

E (6 )=EIYI

E (7 )=EAZI

E(8) =EIPI

E (9 )=MPLI

E (i0) =IPLI

E (ii )=FZI

E (12 )=AGKXl

E (13 )=AGKYI

CALL SET (L, NBEAM, i)

L(5)=LI
CALL SET (MASS, NBODY, i)

MASS (5 )=MASS1
MASS (6 )=MASS2

CALL MAKE (INRT, INRTI )

CALL JUXTV (INRT, INRT2, INRT)

CALL MAKE (T,TI }
CALL MAKE (R, RII)

CALL JUXTV(R, RIO, R)
W=280.0

WINC=I. 01

NIW=300

GO TO i000

BODY#2

end)

OUTBOARD



c
c
c
i000

C
C

1

31

92

30

29
28
3

999
998

***** THE COMMONPART OF THE MAIN PROGRAM*****

CALL SPIT(L,2H L)
CALL SPIT(E,2H E)
CALL SPIT(R,2H R)
CALL SPIT (T, 2H T)
CALL SPIT(MASS, 5H MASS)
CALL SPIT(INRT, 5H INRT)
CALL SET(DETNEW,NA, i)
DO 1 IW=I,NIW
DW=W*(WINC-I.)
W=W+DW
FORMFORCEAND MOMENTMATRICES "PF" AND "PM"
FORMLINEAR AND ANGULARDEFLECTION MATRICES "QU"
CALL PQFORM(W,L, E, P, Q,DUM,DUN)
CALL SET(A,NA, NA)
CALL AFORM(W,A, BODREF,CONFIG,L, P, Q, R, T, INRT, MASS,

IDUM,DUN,DUO,DUP)
CALL ADD(I.,A,0.,A,A)
CALL WSEARCH(W,DW,A, DETNEW,DETOLD,WI)
CONTINUE
AD=I./6.283185
CALL ADD(AS,WI,0.,WI,FI)
CALL SPIT(FI,3H FI)

IF (ISHP) 998,998,31
CONTINUE

NW=WI (i) +.01
DO 3 IW=I,NW

w=wI (Iw+ 4 )
CALL PQFORM (W, L, E, P, Q, DUM, DUN)

CALL AFORM (W, A, BODREF, CONFIG, L, P, Q, R, T, INRT, MASS,

IDUM, DUN, DUO, DUP)

CALL UPPER (A, DETNEW)
DETN=I.

DO 92 I = I,NA

DETN=DETN*DETNEW (I+4 )

CALL SET (DUM, I, NA)

DUM (NA+4) =i.

CALL DIAG (A, DUN)
IF (IW-I)29,30,29

CALL MAKE (SHAPE, DUE)
GO TO 28

CALL JUXTV(SHAPE, DUE, SHAPE)
CONTINUE

CONTINUE

IF (ISHP) 998,998,999

CALL SPIT (SHAPE, 5HSHAPE)
STOP

END

AND "QS"

c

c

c

707

***W* **9:** ***9:*

SUBROUTINES
WWWWW WWWWW 9:WWWW

SUBROUTINE AFORM (W, A, BODREF, CONFIG, L, P, Q, R, T, INRT, MASS,

IDUM, DUN, DUO, DUP)

INTEGER APPEND, BEA/_I, BODREF, CONF IG, OBODY

REAL INRT, INRTI, INRTO, MASS, L

DIMENSION DUM(1300),DUN(1300),DUO(1300),DUP(1300),

2INRT(69),INRTI(13) ,MASS(14),L(9),R(94),RI(13),RI(13),

3A(2004), P (436), PF (40), PM (40), Q (436), QU (40), QS (40),

4BODREF (i0,2), CONFIG (5,3) ,T (49), TBEAM (13), T1 (13),

5TIT(13),TRT(13),QUI(40),QSI(40) ,TI(13),RO(13),

6 INRTO (13 )

FORMAT (7E15.4)

NBODY=MASS (i) +. 01
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NBEAM=L(1) +. 01
NA=NBEAM*12
APPEND=NBODY
DO 2 IBEAM = I,NBEAM

CALL SET (TBEAM, 3,3 )

CALL SET(RI,3,3)

CALL SET(RO,3,3)
DO 13 IBLOCK = 1,9

TBEAM (IBLOCK+ 4 ) =T ( (IBEAM* 3 -3 ) "3 +IBLOCK+4 )

RI (IBLOCK+4 )=R ( (IBEAM* 6- 6 ) "3 +IBLOCK+4 )

RO (IBLOCK+ 4 )=R ( (IBEAM* 6-3 ) *3 +IBLOCK+4 )

FORM MATRIX "A" FOR INBOARD BODY

CALL SET(QU,3,12)

CALL SET(QS,3,12)
DO 12 IBLOCK = 1,36

QU (IBLOCK+ 4 )=Q ( (IBEAM* 12-12 )* 12 +IBLOCK+4 )

QS (IBLOCK+4 )=Q ( (IBEAM* 12 -9 )* 12 + IBLOCK+4 )
CALL TRANS (TBEAM, TIT)

IBODY=CONFIG (IBEAM, 2 )

IF (IBODY) 6,4,4
IBODY=- IBODY

ENREF = 1 .

GO TO 18
ENREF=0.

BEAMI=BODREF (IBODY, 1 )

IO=BODREF (IBODY, 2 )

IF (BEAMI-IBEAM) 70,71,70
CALL SET(TI,3,3)

CALL SET(QUI, 3,12)

CALL SET(QSI,3,12)

CALL SET(RI,3,3)

DO 72 IBLOCK = 1,9

T1 (IBLOCK+ 4 )=T ( (BEAM1* 3 -3 ) * 3 +IBLOCK+4 )

R1 (IBLOCK+4 )=R ( (BEAM1* 6+3 *I0-6 ) "3 +IBLOCK+4 )
DO 73 IBLOCK = 1,36

QUI (IBLOCK+4 ) =Q ( (BEAM1* 12 + 6" IO-12 ) * 12 +IBLOCK+4 )
QSI (IBLOCK+4 ) =Q ( (BEAM1*12+6* IO-9 ) *I2+IBLOCK+4 )

CALL MULT (TI, QUI, DUN)
CALL ADD(I.,RI,-I.,RI,DUM)

CALL MULT (DUM, TI, DUO)

CALL MULT (DUO, QSI, DUM)

CALL ADD (- 1., DUN, - i., DUM, DUO)

CALL MULT (TIT, DUO, DUP)

CALL MULT (TI, QSI, DUM)

CALL MULT (TIT, DUM, DUN)
CALL ADD (-I., DUN, 0., DUN, DUN)

CALL JUXTV (DUP, DUN, DUO)

CALL JUXTV (QU, QS, DUP)

DO 75 IBLOCK = 1,6

DO 74 JBLOCK = 1,12
ID= (APPEND* 6 + IBLOCK- 1 ) *NA+JBLOCK+BEAMI* 12 - 8

A (ID) =DUO ( (IBLOCK-I ) *12+JBLOCK+4 )

DO 75 JBLOCK = 1,12

ID= (APPEND* 6 + IBLOCK- 1 ) *NA+ JBLOCK+ IBEAM* 12 - 8

A (ID) =DUP ( (IBLOCK-I ) * 12 +JBLOCK+4 )
AP PEND=AP PEND+ 1

CONTINUE

CONTINUE

EM:MASS (IBODY+ 4 )

CALL SET(INRTI,3,3)

DO 14 IBLOCK = 1,9

INRTI (IBLOCK+4 )=INRT ( (IBODY* 3 -3 ) *3 +IBLOCK+4 )

CALL SET(PF,3,12)

CALL SET (PM, 3,12 )
DO 31 IBLOCK = 1,36

PF (IBLOCK+ 4 )=P ( (IBEAM* 12 -12 ) *12 + IBLOCK+4 )
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PM (IBLOCK+4 )=P ( (IBEAM* 12 -9 )* 12 + IBLOCK+ 4 )
W2 =W*W

W2IN=I./W2

CALL MULT (RI ,TBEAM, DUM)

CALL MULT (TIT, DUM, TRT)

FIRST BLOCK, FORCE EQUATIONS, INBOARD

IF (EM-999999999 •) 86,87,86

AD=ENREF

AE=0.
GO TO 88

AD= ENREF* EM

AE =W2 IN

CONTINUE

CALL ADD (AD, QU, AE, PF, DUO)

CALL MULT (TRT, QS, DUN)

CALL ADD (i., DUO, +AD, DUN, DUO)
SECOND BLOCK, MOMENT EQUATIONS, INBOARD

CALL MULT (RI, TBEA/K, DUM)

CALL MULT (DUM, PF, DUN)

CALL MULT (TBEAM, PM, DUM)

CALL ADD (+W2 IN, DUM, +W2 IN, DUN, DUP)

CALL MULT (TBEAM, QS, DUM)

CALL MULT (INRTI, DUM, DUN)

CALL ADD (1., DUP, ENREF, DUN, DUP)
CALL JUXTV (DUO, DUP, DUO)

DO 5 IBLOCK = 1,6

DO 5 JBLOCK = 1,12

A ( (IBODY* 6+IBLOCK-7 ) *NA+ IBEAM* 12 +JBLOCK- 8 )=DUO ( (IBLOCK- 1 )

i* 12 +JBLOCK+ 4 )
FORM MATRIX "A" FOR OUTBOARD BODY

CALL SET (QU, 3,12)

CALL SET(QS,3,12)

DO 19 IBLOCK = 1,36

QU (IBLOCK+4 )=Q ( (IBEAM* 12- 6 )* 12 + IBLOCK+4 )

QS (IBLOCK+4 )=Q ( (IBEAM* 12-3 )* 12 +IBLOCK+4 )
OBODY=CONFIG (IBEAM, 3 )

IF (OBODY) 15,15,16
ENREF = 1 .

OBODY=-OBODY

GO TO 17
ENREF = 0 .

BEAMI=BODREF (OBODY, 1 )

IO=BODREF (OBODY, 2 )

IF (BEAMI-IBEAM) 80,81,80

CALL SET(TI,3,3)

CALL SET (QUI, 3,12)

CALL SET(QSI,3,12)
CALL SET(RI,3,3)

DO 82 IBLOCK = 1,9

T1 (IBLOCK+ 4 )=T ( (BEAM1 * 3 - 3 ) *3 + IBLOCK+ 4 )
R1 (IBLOCK+4 )=R ( (BEAM1*3 -3 ) "3 +IBLOCK+4 )

DO 83 IBLOCK = 1,36

QUI (IBLOCK+4) =Q ((BEAMI*I2+6*IO-12) *12 +IBLOCK+4 )

QS 1 (IBLOCK+ 4 )=Q ( (BEAM1 *12 + 6 * IO- 9 ) * 12 + IBLOCK+ 4 )

CALL

CALL

CALL

CALL
CALL

CALL

CALL

CALL

CALL

CALL

CALL

DO 85

MULT (TI, QUI, DUN)

ADD (i., RI, -i., RI, DUM)

MULT (DUM, TI, DUO)

MULT (DUO, QSI, DUM)
ADD (- i., DUN, - i., DUM, DUO)

MULT (TIT, DUO, DUP)

MULT (TI, QSI, DUM)
MULT (TIT, DUM, DUN)

ADD (-i., DUN, 0., DUN, DUN)

JUXTV (DUP, DUN, DUO )

JUXTV (QU, QS, DUP )

IBLOCK = i, 6
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DO 84 JBLOCK = 1,12

ID= (APPEND* 6 + IBLOCK- 1 )*NA+ JBLOCK+BEAMI * 12 - 8
A (ID) =DUO ( (IBLOCK- 1 ) * 12 +JBLOCK+4 )
DO 85 JBLOCK = 1,12

ID= (APPEND* 6 + IBLOCK- 1 ) *NA+ JBLOCK+ IBEAM* 12 - 8

A (ID) =DUP ( (IBLOCK- 1 ) * 12 +JBLOCK+4 )
APPEND=APPEND+ 1

CONTINUE

CONTINUE

EM=MASS (OBODY+ 4 )
CALL SET (INRTO, 3,3 )

DO 24 IBLOCK = 1,9

INRTO (IBLOCK+ 4 )= INRT ( (OBODY* 3 - 3 ) * 3 + IBLOCK+ 4 )

CALL SET(PF,3,12)

CALL SET(PM,3,12)

DO 33 IBLOCK = 1,36

PF (IBLOCK+4) =P((IBEAM*I2-6) *I2+IBLOCK+4)

PM (IBLOCK+4 ):P ( (IBEAM* 12- 3 ) * 12 + IBLOCK+4 )
W2 =W*W

W2 IN=I./W2

CALL MULT (RO, TBEAM, DUM)

CALL MULT (TIT, DUM, TRT)

FIRST BLOCK, FORCE EQUATIONS, OUTBOARD

IF (EM-999999999 . )96,97,96
AD=ENREF

AE=0 .

GO TO 98

AD=ENREF*EM
AE=W2 IN

CONTINUE

CALL ADD (AD, QU, AE, PF, DUO)

CALL MULT (TRT, QS, DUN)

CALL ADD (i., DUO, +AD, DUN, DUO)

SECOND BLOCK, MOMENT EQUATIONS, OUTBOARD

CALL MULT (RO, TBEAM, DUM)
CALL MULT (DUM, PF, DUN)

CALL MULT (TBEAM, PM, DUM)

CALL ADD (+W2 IN, DUM, +W2 IN, DUN, DUP )

CALL MULT (TBEAM, QS, DU-M)

CALL MULT (INRTO, DUM, DUN)
CALL ADD (i., DUP, ENREF, DUN, DUP)

CALL JUXTV (DUO, DUP, DUO)

DO 7 IBLOCK = 1,6

DO 7 JBLOCK = 1,12
A ( (OBODY* 6+IBLOCK-7 ) *NA+IBEAM* 12 +JBLOCK- 8 )=DUO ( (IBLOCK- 1 )

1 * 12 + JBLOCK+ 4 )
CONTINUE

RETURN

END

SUBROUTINE BODFORM (CONF IG, NBEAM, BODREF ,NBODY)

INTEGER CONFIG, BODREF

DIMENSION CONFIG (5,3 ) ,BODREF (i0,2 )

FORMAT (7Ii0)
JMAX=I

DO 50 IBEAM = I,NBEAM

J=CONFIG (IBEAM, 2 )
J2=J*J

IF (JMAX*JMAX-J2) i, 2,2
JiKAX2 =J2

CONTINUE

IF (J) 51,51,52
J=-J

BODREF (J, i) =IBEAM

BODREF (J, 2 )= 0

J=CONFIG (IBEAM, 3 )
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J2=J*J

IF (JMAX*JMAX-J2) 3,4,4
JFIAX2 =J2

CONTINUE

IF (J) 53,53,54

J=-J

BODREF (J, i) =IBEAM

BODREF (J, 2 )= 1
CONTINUE

CONTINUE

AD=JMAX2

NBODY=SQRT (AD) +. 01
DO 63 I = I,NBODY

PRINT 777,I,BODREF(I,I),BODREF(I,2)

RETURN

END

SUBROUTINE PFORM (W, L, Z, EIX, EIY, EAZ, EI P, MPL, IPL, FZ, AGKX, AGKY,

IPF, PM)

REAL L, MPL, IPL
DIMENSION PF(40),PM(40)

FORMAT (7E14 .5 )

W2 =W*W

W2IN=I./W2

IF (EIX-FZ*FZ*. 071) 8,8,9

ARG=MPL / (FZ-EIX*MPL*W2/AGKX)

BXAB=W* SQRT (ARG)
BXCD=I8.42/L

GO TO i0

CONTINUE

AD=. 5* (MPL*W2/AGKX-FZ/EIX)

AE=MPL*W2/EIX

ARG=AD+ SQRT (AD*AD+AE)

BXAB=SQRT (ARG)

ARG=-AD+ SQRT (AD*AD+AE)

BXCD= SQRT (ARG)
CONTINUE

IF (EIY-FZ*FZ*. 071) ii, ii, 12
ARG=MPL / (FZ-EIY*MPL*W2/AGKY )

BYAB=W* SQRT (ARG)

BYCD=I8.42/L

GO TO 13

CONTINUE

AD=. 5 * (MPL*W2/AGKY-FZ/EIY)
AE=MPL*W2/EIY

ARG=AD+ SQRT (AD*AD+AE)
BYAB= SQRT (ARG)

ARG=-AD+ SQRT (AD*AD+AE)

BYCD= SQRT (ARG)

CONTINUE

BZ=SQRT (MPL/EAZ) *W

BP=SQRT (IPL/EIP) *W
FORCE MATRIX FOR BEAM

CALL SET(PF,3,12)
BXAB2 =BXAB*BXAB

BXCD2 =BXCD*BXCD
BXAB3 =BXAB2 *BXAB

BXCD3 =BXCD2 *BXCD

BYAB 2 = BYAB* BYAB

BYCD2 =BYCD*BYCD

BYAB3 =BYAB2 *BYAB
BYCD3 =BYCD2 *BYCD

IF(Z)2,3,2

PF (5 )=+BXAB3 *EIX+BXAB*FZ

PF (6) =0.
PF (7 )=-BXCD3 *EIX-BXCD*FZ
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PF (8) =0.
PF (21 ) =+BYAB3 * EIY+BYAB*FZ

PF (22) =0.
PF (23 )=-BYCD3 *EIY-BYCD*FZ

PF (24) =0.

PF (37) =BZ*EAZ

PF(38)=0.
GO TO 4

PF (5) =-BXAB3 *EIX*COS (BXAB*L) -BXAB*FZ*COS (BXAB*L)

PF (6) = BXAB3*EIX*SIN(BXAB*L) +BXAB*FZ*SIN(BXAB*L)

PF (7) = BXCD3 *EIX*COSH (BXCD*L) -BXCD*FZ*COSH (BXCD*L)

PF (8 )= BXCD3 *EIX*SINH (BXCD*L) -BXCD*FZ*SINH (BXCD*L)

PF (21) =-BYAB3 *EIY*COS (BYAB*L) -BYAB*FZ*COS (BYAB*L)

PF (22) = BYAB3 *EIY*SIN (BYAB*L) +BYAB*FZ*SIN (BYAB*L)

PF (23) = BYCD3 *EIY*COSH (BYCD*L) -BYCD*FZ*COSH (BYCD*L)

PF (24) = BYCD3 *EIY*SINH (BYCD*L) -BYCD*FZ*SINH (BYCD*L)

PF (37 )=-BZ*EAZ*COS (BZ*L)

PF (38 )=BZ*EAZ* SIN (BZ*L)
CONTINUE

MOMENT MATRIX FOR BEAM

CALL SET (PM, 3,12 )

IF(Z)5,6,5

PM(17) =0.
PM (18 )= +BXAB2 *EIX+FZ

PM(19) =0.

PM (20 )=-BXCD2 *EIX+FZ

PM(9) =0.

PM (I0 )=-BYAB2 *EIY-FZ
PM(II) =0.

PM (12 )=+BYCD2 *EIY-FZ

PM(39) =BP*EIP

PM(40) =0.
GO TO 7

PM (17 )=-BXAB2 *EIX*SIN (BXAB* L) -FZ*SIN (BXAB*L)

PM (18 )=-BXAB2 *EIX*COS (BXAB*L) -FZ*COS (BXAB*L)
PM (19 )=BXCD2 *EIX* SINH (BXCD*L) -FZ* SINH (BXCD*L)

PM (20 )=BXCD2 *EIX*COSH (BXCD*L) -FZ*COSH (BXCD*L)

PM (9 )=BYAB2 *EIY* SIN (BYAB* L )+FZ *SIN (BYAB* L )

PM (i0 )=BYAB2 *EIY*COS (BYAB*L) +FZ*COS (BYAB* L)

PM (ii )=-BYCD2 *EIY* SINH (BYCD*L) +FZ* SINH (BYCD*L)

PM(12 )=-BYCD2 *EIY*COSH (BYCD*L) +FZ*COSH (BYCD*L)

PM (39 )=-BP*EIP*COS (BP*L)

PM (40 )=BP*EIP* SIN (BP*L)
CONTINUE

RETURN

END

SUBROUTINE QFORM (W, L, Z, EIX, EIY, EAZ, EIP, MPL, IPL, FZ, AGKX, AGKY, QU, QS )

REAL L,MPL, IPL

DIMENS ION QU (40 ), QS (40 )

W2 =W*W

IF (EIX-FZ*FZ*. 071) i, i, 2

ARG=MPL / (FZ-EIX*MPL*W2/AGKX)

BXAB=W* SQRT (ARG)

BXCD=I8.42/L

GO. TO 3

CONTINUE

AD=. 5* (MPL*W2/AGKX-FZ/EIX)
AE=MPL*W2/EIX

ARG=AD+ SQRT (AD*AD+AE)

BXAB=SQRT (ARG)

ARG=-AD+ SQRT (AD*AD+AE)

BXCD= SQRT (ARG)
CONTINUE

IF (EIY-FZ*FZ*. 071) 4,4,5

ARG=MPL/(FZ-EIY*MPL*W2/AGKY)
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BYAB=W*SQRT(ARG)
BYCD=I8.42/L
GO TO 6
CONTINUE
AD=. 5" (MPL*W2/AGKY-FZ/EIY)
AE=MPL*W2/EIY
ARG=AD+SQRT(AD*AD+AE)
BYAB=SQRT(ARG)
ARG=-AD+SQRT(AD*AD+AE)
BYCD=SQRT(ARG)
CONTINUE
BZ=SQRT(MPL/EAZ) *W
BP=SQRT(IPL/EIP) *W
AD-I .
LINEAR DEFLECTION MATRIX
CALL SET(QU,3,12)
IF(Z)8,9,8
QU(5) =o.
QU(6) =I.

QU(7) =0.

QU(8) =i.
Qu(21) =0.

QU(22) =i.

QU (23)=0.

Qu(24)=I.

Qu (37)=0.

Qu (38)=i.
GO TO i0

CONTINUE

QU (5 )=SIN (BXAB*L)

QU (6 )=COS (BXAB*L)

QU (7) =SINH (BXCD*L)

QU (8 )=COSH (BXCD*L)

QU (21 )=SIN (BYAB*L)
QU (22 )=COS (BYAB*L)

QU (23) =SINH (BYCD*L)

QU (24) =COSH (BYCD*L)
QU (37) =SIN(BZ*L)

QU (38) =COS (BZ*L)

CALL ADD (AD, QU, 0., QU, QU)
ANGULAR DEFLECTION MATRIX

CALL SET (QS, 3,12)
IF (Z) ii, 12, ii

QS (17) =BXAB

QS(18)=0.

QS (19) =BXCD

QS (20)=o.
QS (9 )=-BYAB

QS(10)=0.

QS (ii) =-BYCD

QS(12)=0.

QS(39)=0.

QS(40)=-I.
GO TO 13

CONTINUE

QS (17) =BXAB*COS (BXAB*L)

QS (18 )=-BXAB*SIN (BXAB*L)
QS (19 )=BXCD*COSH (BXCD*L)

QS (20 )=BXCD*SINH (BXCD*L)

QS (9 ) =-BYAB*COS (BYAB*L)

QS (i0 )=BYAB*SIN (BYAB*L)

QS (11 )=-BYCD*COSH (BYCD* L )

QS (12 )=-BYCD* SINH (BYCD*L)
QS (39) =-SIN(BP*L)

QS (40) =-COS (BP*L)

CALL ADD(-I.,QS,0.,QS,QS)



RETURN f
END

SUBROUTINEPQFORM(W,L, E, P, Q,DUM,DUN)
REAL L,LI,MPL,IPL
DIMENSION L(9),E(5),P(5),Q(5),DUM(5),DUN(5)
NBEAM=L(1) +. 01
DO 1 IBEAM = I,NBEAM
LI=L (IBEAM+4)
EIX=E ((IBEAM-I) *9+5)
EIY=E ((IBEAM-I) *9+6)
EAZ=E( (IBEAM-1) *9+7 )
EIP=E ((IBEAM-I) "9+8)
MPL=E((IBEAM-I) *9+9)
IPL=E ((IBEAM-I) "9+10)
FZ=E((IBEAM-I) "9+11)
AGKX=E( (IBEAM-1) "9+12 )
AGKY=E( (IBEAM-I ) "9+13 )
CALL PFORM(W,LI, 0. ,EIX, EIY, EAZ, EIP, MPL, IPL, FZ, AGKX,AGKY,DUM

i, DUN)
IF (IBEA_-I) 2,3,2
CALL MAKE(P, DUM)
GO TO 4
CALL JUXTV(P, DUM,P)
CALL JUXTV( P,DUN,P)
CALL QFORM(W,LI,0.,EIX,EIY, EAZ,EIP,MPL, IPL,FZ,AGKX,

IAGKY, DO-M,DUN)
IF (IBEAM-I) 5,6,5

6 CALL MAKE(Q,DUM)
GO TO 7

5 CALL JUXTV(Q,
7 CALL JUXTV(Q,

CALL PFORM(W,
IAGKY, DUM,DUN)
CALL JUXTV(P,
CALL JUXTV(P,
CALL QFORM(W,

IAGKY, DUM,DUN)
CALL JUXTV(Q,DUM,Q)

1 CALL JUXTV(Q,DUN,Q)
RETURN
END

c

DUM,Q)
DUN,Q)
LI, LI, EIX, EIY, EAZ, EIP, MPL, IPL, FZ, AGKX,

DUM,P)
DUN,P)
LI, LI, EIX, EIY, EAZ, EI P,MPL, IPL, FZ, AGE]f,

SUBROUTINEWSEARCH(W,DW,A, DETNEW,DETOLD,WI)
DIMENSION A (5), DETOLD(5), DETNEW(5), WI ( 5)

707 FORMAT(7E12.5)
NA:A (i)
A77=A(77)
CALL MAKE(DETOLD,DETNEW)
DETO=I.
DO 3 I =I,NA

3 DETO=DETO*DETOLD(I+4 )
CALL UPPER(A, DETNEW)
DETN=1 .
DO 1 I=I,NA

1 DETN=DETN*DETNEW(I+4 )
FREQ=W/6.2831853
PRINT 707, FREQ,A77, DETN
IF (DETO*DETN)4,2,2

4 WROOT=W-DW-DETO*DW/(DETN-DETO)
NW=WI(I) +i. 001
wi (i)=NW
WI (NW+ 4 )=WROOT

CALL SPIT (WI, 3H WI)
2 RETURN

END
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SUBROUTINEUPPER(A, DETA)
GERNERATESTHE DETERMINANT, DETA,OF MATRIX A
DIMENSION A (5), DETA(5)
FORMAT(2E15.7)
N = A(1) + .01
NMI =N- 1

NPI = N + 1

DO 5 K = I,NMI
KROW=K

AKK=A (K*N+K-N+4)

IF (AKK) i, 2,1
KROW=KROW+ 1

IF (KROW-N) 7,7,5

AKK=A (KROW*N+K-N+ 4 )

IF (AKK) 3,2,3

DO 4 J=K,N

AD=A (K*N+J-N+4)

A (K*N+J-N+4) =A (KROW*N+J-N+4)

A (KROW*N+J-N+4) =AD "
AKKI = i./AKK

K1 = K + 1

DO 6 KI = KI,N

AKIK = A(KI*N + K - N+4)*AKKI

A(KI*N + K - N + 4)=0.

DO 6 L = KI,N
KIL = KI*N + L - N + 4

A(KIL) = A(KIL) - AKIK*A(K*N + L - N + 4)
CONTINUE

CONTINUE

AD=I.

CALL SET (DETA, N, i)
DO 16 I = I,N

DETA(I+4)=A(I*N + I - N + 4)
EYE = I

AD=AD* DETA (I+4 )

IF (AD) 26,27,26

PRINT 10 i, AD, EYE
AD=I.

CONTINUE

CONTINUE

RETURN
END

SUBROUTINE DIAG (A, SHAPE)

DIMENSION A(5), SHAPE(5)

FORMAT (Ii0,5E12.4)

NA=A (i) +. 01
NAMI=NA-I

DO 1 I = I,NAMI
IPI=NA-I+I

AD=0.

DO 2 J = IPI,NA

AD=AD- SHAPE (J+4) *A ( (NA-I- 1 )*NA+J+4 )
SHAPE (NA-I+4) =AD/A ((NA-I-I) *NA+NA-I+4 )
CONTINUE

RETURN

END
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ABSTRACT

During the past three decades the finite element method matured gradually and dominated

almost exclusively all the engineering applications. But the practice of generating complex finite

element dynamic models of aerospace structures has revealed a number of shortcomings. First,

the high dimensionality of the models requires an order-reduction process before a control system

can be designed. However, seemingly unimportant modes can be inadvertently eliminated which

prove later to be significant to control system performance and stability. Second, use of finite

element models for dynamic system identification is generally very difficult because of the

extremely large amount of unknowns. Third, the structural damping is generally added ad hoc

after generating an undamped model. Inaccurate damping results, especially for the modes which

couple different types of motion.

In contrast, distributed parameter models offer an alternative to finite element models for

overall dynamic analysis and control synthesis for aerospace and aeronautical structures. First,

the modal order does not have to be reduced prior to the inclusion of control system dynamics,

which eliminates the risk involved with modal truncation. Second, distributed parameter models

inherently involve fewer parameters, thereby enabling more accurate parameter estimation using

experimental data. Third, it is possible to include the damping in the basic model, thereby

increasing the accuracy of the structural damping. Recently, distributed parameter models have



been madefor some large spacestructures. Distributedparametermodels may provide an
efficientcomplementarymethodologyto thefinite elementapproach.

The softwarepackagePDEMOD was initializedby the lateLawrenceW. Taylor, Jr. at
NASA Langley ResearchCenterduring the middle of the 1980's. The initial interest in the
packagePDEMOD wasto modelthe structuraldynamicsof generalspacecraftconfigurationsby
using the distributedparameterapproach,which consistsof a three-dimensionalnetwork of
flexiblebeamsandrigid bodies.Thebuildingblocksfromwhichthree-dimensionalconfigurations
can be constructedconsist of (1) beams,which havebendingin two directions, torsion, and
elongationdegreesof freedom,and(2) rigid bodies,whichareconnectedby anynetwork of beam
elements.Thefull sixdegreesof freedomareallowedat eitherendof thebeam.Rigid bodiescan
be attachedto the beamat anyangleor body location. The modifiedBernoulli-Euler beam
equationisusedto representthebending,thewaveequationsfor torsionandelongation.

A systemof partial differentialequations(PDEs) is formulated and connectedat the
elements'boundariesbasedon the compatibilityconditions. The equationsof motion for any
numberof rigid bodiesarewritten in thefrequencydomainandin termsof the coefficientsof the
sinusoidalandhyperbolicfunctionswhich comprisethe modeshapes. The force and moment
vectors for bothendsof a singlebeamelementcanbedescribedin termsof the spatialderivatives
of the solutionsof the correspondingPDE's. Distributedparametermodelscan thereforebe
generated for any three-dimensionalconfigurations describableby PDEs joined at their
boundaries.Becauseof Mr. Taylor's sudden demise, it becomes an urgent task to summarize and

sift his research achievements and make them available to the other researchers. We have

continued his work and recovered the basic functions of this package which may provide an

opportunity to more researchers to apply distributed parameter modeling techniques to a variety

of aerospace structures. The verification of the code has been conducted by comparing the results

with those examples for which the exact theoretical solutions can be obtained.

By investigating the potential of the distributed parameter modeling technique, we expect

that the PDEMOD may be further developed in the following aspects: (1) structural dynamics,

modal frequencies and mode shapes; (2) parameter estimation of modal characteristics; (3)

structural damping; (4) control system dynamics; and (5) design optimization. In its present

stage, however, only the first of the functions has been completed and included in the package.

Meanwhile, a massive effort is being conducted which is expected to modify the mathematical

model and global system generating procedure to develop the methodology for control analysis

purpose. Instead of using the coefficients of the solution functions, the transfer matrix may be

used finally, which provides a much more convenient way to describe the state-vector transition

from one point of the structure to the other. All these research outputs are planned to be contents

of the modified version of the package.

INTRODUCTION

During the past three decades the finite element method had become extremely popular in

a very wide field of engineering. As early as the 1960's, the aircraft industry had developed in-

house finite element programs. During the 1970's, some general-purpose finite element programs

such as NASTRAN were released for public use, bringing with them a significant technology base

that led to development of numerous commercial finite element soil-ware systems. Later, the
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various commercialpackageswere refined,and their technologybasewas expanded. NASA's
researchin computationalstructurestechnology(CST)t_1is helpingto developthe finite element
analysisto a newstagethat is capableof usinga generalautomatedunstructuredgrid generation
to discretizetheaerodynamicfield andthestructurefor thermalandstructuralanalysist2].

But suchatreatmenthavingavery largenumberof elementsisusuallyvery expensiveand
timeconsuming.In staticfiniteelementanalyses,modelshavingover 10,000degreesof freedom
(DOF) arenotuncommon.In fact,a finiteelementmodelof ahelicopterfuselagecurrentlyunder
designcontainsabout27,000grid pointsand 149,000DOF. It is economicallyunfeasibleand
normally unnecessaryto conduct dynamicanalysiswith this manyunknowns. Most of the
dynamicmodelsbasedon the firfiteelementapproachmustresortto modaltruncationtechniques
to reducethe numberof unknownsprior to dynamicanalysis.However, the control spillover
resultingfrom the modal truncationmayleadto degradationof control systemperformance,or
evencreateinstabilityt31.

The configuration of large space structures usually has the following common
characteristics:extremelylarge dimension,light-weightdesign,high flexibility, rather uniform
massand stiffnessdistribution,low and closely spacednaturalfrequencies,and slight and/or
improperly modeleddamping. Structureswith thesecharacteristicsare essentiallydistributed
parametersystemsbynature,andshouldbemost accuratelymodeledasa continuouslydistributed
massand stiffnessover the entirestructuralarearatherthana sequenceof finite massdements
coupledtogetherasthefinite dementapproachdoes.

In contrast,distributedparametermodelingprovidesavery practicalapproachfor overall
dynamicanalysisand control synthesisfor aerospaceand aeronauticalstructures. Recently,
distributedparametermodelshave beenmade for somelarge spacestructures,such as, the
SpacecraftControlLaboratoryExperiment(SCOLE)t4l, SolarArrayFlight Experiment(SAFE)t5],
SpaceStation,Freedomt6J,Low-power AtmosphericCompensationExperiment(LACE) satellite
modelt71, and the Aerospace Large Flexible Manipulatort81. The fundamental advantage of using

the distributed parameter approach is to decrease the number of unknowns significantly. In the

preliminary design stage, the detailed structural design is often neglected; therefore, a simple but

efficient global structural model may be more beneficial to weigh the trade-off between the

performance and cost, between the structural penalty and control system consummation, etc.

Distributed parameter models may provide an efficient complementary methodology to the finite

element approach.

The software package PDEMOD was initialized by the late Lawrence W. Taylor, Jr. at

NASA Langley Research Center during the middle of the 1980's. The first release of his work on

PDEMOD package was in 1987t9._0,1_r The initial interest in the package PDEMOD was to model

the structural dynamics of general spacecraft configurations by using the distributed parameter

approach, which consists of three-dimensional network of flexible beams and rigid bodies. The

building blocks from which three-dimensional configurations can be constructed consist of (1)

beams, which have bending in two directions, torsion, and elongation degrees of freedom, and (2)

rigid bodies, which are connected by any network of beam elements. The full six degrees of

freedom are allowed at either end of the beam. Rigid bodies can be attached to the beam at any

angle or body location. The modified Bernoulli-Euler beam equation is used to represent the

bending, the wave equations for torsion and elongation.

A system of partial differential equations (PDEs) is formulated and connected at the

elements' boundaries based on the compatibility conditions. The equations of motion for any



numberof rigid bodiesarewritten in thefrequencydomainandin termsof the coefficientsof the
sinusoidalandhyperbolicfunctionswhich comprisethe modeshapes. The force and moment
vectorsfor bothendsof asinglebeamelementcanbedescribedin termsof the spatialderivatives
of the solutionsof the correspondingPDE's. Distributedparametermodelscan thereforebe
generated for any three-dimensionalconfigurations describableby PDEs joined at their
boundaries.Themanuallaborof generatingsuchmodelsis thereforeavoided.

Becauseof Mr. Taylor'ssuddendemise,it becomesanurgenttaskto summarizeandsift
his researchachievementsand makethemavailableto the other researchers.We continuedhis
work andrecoveredthe basicfunctionsof this packagewhich may providean opportunityto
more researchersto applydistributedparametermodelingtechniquesto a variety of aerospace
structures.Theverificationof thecodehasbeenconductedby comparingthe resultswith those
examplesfor whichthe exacttheoreticalsolutionscanbeobtained,for instance,a simplebeam
with variousboundaryconditions,etc.

By investigatingthepotentialof the distributedparametermodelingtechnique,we expect
that the PDEMOD maybe further developedin the following aspects:(1) structural dynamics,
modal frequenciesand mode shapes;(2) parameterestimationof modal characteristics;(3)
structural damping;(4) control systemdynamics;and (5) designoptimization. In its present
stage,however,only the first of the functionshasbeencompletedand includedin the package.
Meanwhile,a massiveeffort is beingconductedwhich is expectedto modify the mathematical
model and global systemgeneratingproceduret7,_2J to developthe methodologyfor control
analysispurposet_3,14]. Insteadof usingthe coefficientsof the solution functions, the transfer
matrix maybeusedfinally, which providesa muchmoreconvenientway to describethe state-
vector transitionfrom one point of the structureto the other. All theseresearchoutputsare
plannedto becontentsof themodifiedversionof thepackage.

PARTIAL DIFFERENTIAL EQUATIONS (PDEs)

A complex large space structure can be decomposed into simple pieces. A network of

distributed parameter elements and the attached rigid bodies are connected to represent the

structural dynamics of the complex flexible spacecraft. Each flexible beam element exhibits lateral

bending u and v in two axes, axial deformation w, and torsion V, as shown in Fig. 1, which can be

independently described by a variety ofPDEstls I.

X, u

y,v, bo I rz, w

Figure 1 A Beam Element

The bending behavior of a beam element can be described by a modified Bernoulli-Euler

beam equation which includes Euler bending stiffiaess, Timoshenko shear, and axial-force stiffness

for lateral deflections in the x-z and y-z planes. The PDE for bending in the x-z plane is

4



mii + Elxu'° + GAff'+ Fou" = qx (z,t) (1)

The corresponding equation for bending in the y-z plane is

mi," + EI, v'" + GAi,'" + Fov" = q, (z,t) (2)

The axial and torsional dynamics are represented by wave equations,

raft,- EAw" = F, (z,t) (3)
and

J_,_-Glv, v'= M,(z,t) (4)

..

respectively. The PDEs" provide the relationships between the modal frequency and the

eigenvalues for the mode shape functions. The Euler and wave equations can be solved for the

zero damping cases to produce the following relationships between the modal frequency c0 and

the eigenvalue [3t_6I. For bending in the x-z plane,

1 (moo z F o "_ I1(moo z F o "_ moo z

2. =+----+-- + -- --+-- _x

For bending in the y-z plane,

lfmco 2 Fo ]+ [l[mco 2 Fo f

For elongation and torsion, we have

(5)

and

respectively.

mo9 2

(6)
H,

m_ 2

EA (7)

MODE SHAPE FUNCTIONS

The solutions of these partial differential equations for zero damping produce the

sinusoidal and hyperbolic spatial equations which comprise the mode shape functions. For the

case that F0=0, the bending mode shape in the x-z plane is,



u = A x sin,Bxz+B _ cosfl_z + Cx sinh/3xz + Dx coshfl, z (9)

Similarly, for the bending in the x-z plane the mode shape function is,

v = A, sin 3yz + By cos3yz + Cy sinh/3yZ + Dy cosh,Syz (lO)

The undamped mode shape function for elongation along the z-axis is

w = A, sin 3,z + B, cos 3,z (11)

The undamped mode shape function for torsion about the z-axis is

V = Av sinflrz+B,, cosflvz (12)

These undamped mode shape functions are expected to be good approximations to the

exact solutions for low level of damping. The mode shape of the entire configuration consists of

all these functions, repeated for each beam dement. Because of bending in two directions,

elongation, and torsion, a total of 12 coefficients are needed for each beam element. A vector of

the coefficients of these sinusoidal and hyperbolic functions is defined as the mode shape

parameter vector,

0 T (13)

The translational deflection vector is defined as,

where, oo0000001
Lo 0 0 0 0 0 0 0 Q_9 Q_.lo o

(14)

the non-zero elements of the matrix [Q,(z)] are as follows,

Q_l = sin/3x z

Q_s = sin 3yz

Q_' = sin/3,z

Q22 = cos_xz

Q_a = cos_yz

Q_.lo = cos_:z

The angular deflection vector is defined as,
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where,

{ui}{U'}= =[Q,(z)]{o}

,--.I--O,1t Q22 Q23 Q2' 0 0 0 0 0 0 0 0 ,]

[Q,(z)]=/o 0 0 0 Q:5 Q_, Q:7 Q:S 0 0 0 0 /

lo 0 0 0 0 0 0 0 0 0 o_.n Q_.I2 /

the non-zero elements of the matrix [Q,(z)] are as follows,

9.','=_ cos/L_
O,_'--8,cos/3,_
Q3.,, = sinflr z

Q22 =-fix sinflxZ

O,:' =-fl, sinflez

Q3.,, = cosflv, z

Qj3 = fix c°shflxz

Q,_' = fly cosh flyz

(15)

Q_4 = fix sinh flxz

Q2, = fly sinh fly z

FORCES AND MOMENTS

Next, it is necessary to express the forces and moments at either end of the beam element

in terms of the mode shape parameter vector {0}. The force vector is as

F, IEAw'J

(16)

where,

]"--w --i --, _,|/._;i p¢2 /_;3 /gF 4 0 0 0 0 0 0 0 0]

[P,_(2)]=[: o o o py ,07' p_7 Py o p_.,o°oJoo°
0 0 0 0 0 0 0 p_9 . _"

the non-zero elements of the matrix [PF(z)] are as follows,

-PA'=-/L'E]',,cos/L=
p_3 = fl_E/= cosh fix z

Py=-/3;EI, cos_,z
P_' = [J_EIy cosh flyZ

/'_'=/3,E_cosE=

G2 3= flxE/sinflxz
3

p_4 = flxE1 x sinh flxz

P_' = _EI, sin fl, z

Py=/_;_, sir,h/3,2
p_.,o =_fl, EA sinfl F

The moment vector can be expressed as



g NF-I I -"l
{M} = ]My _= / El, v" _ = [PM (z)]{0}

lM, J IGI,_J
(17)

where,

rP#?_:P2P_' o o o o oo o ol

[p.O)]=[: o 0 o _,_,' ?_' P# P2oo 0 0j
0 0 0 0 0 0 0 0 0 p_ll p3,12-M

the non-zero elements of the matrix [PM(Z)] are as follows,

p2 =-_EI_sin#:
p23= #=E/. sinhflxz

P_,'=-#_El, sin#,z
:'2=#_::,sinh#:
?_"= #,GZ_cos#:

pg =-#_EZxcos&_
P_ =#_EZ.cosh#:
1y:=-#_, cos#:
?_;=#_,::,cosh#,z
pff2 = _[3_,Glv sin flvz

It is also necessary to account for changes in axes from each beam to the body to which it

is attached, and for points of attachment at some distance from the center of gravity of the body.

The forces and moments that the beam i applies to the body j expressed in the body j's coordinate

system are,

{F}j, = [r];,{F},: =[r],.,[P,],{o},

:M}:, =tT],,(:M} o.+[R]y,{F},,)=[ T]j,([P.], +[R],,[P.],):O},

(18)

(19)

where, the coordinate-transformation matrix from the beam i's coordinate system to the body j's
coordinate system is

[cos(Xj,x,)

[r]:, :| cos(r,,_,)
Lcos(Z,.,_:,)

cos(X.,,y,) cos(X.,.,z,)]
cos(r,.,y,) cos(Z,.:,) i
cos(Z,,y, ) cos(Z.,,:,) ]

(2O)

the eccentric matrix at the attachment point between the beam i and body j is

I O -r z rr Jji
[R]j, o= rz -r x

-r r rx 0

(21)



RIGID BODY MOTIONS

A Newtonian or inertial frame of reference XoYoZ0 is used for the motions of all beam

elements and rigid bodies.

xo Bodyl

ut am_k

• oGo _/  gi.

_ (at t=to!
ZO

Figure 2 Rigid Body Motion

Consider body j connecting several beams, of which beam k is taken into account as a

datum. From Fig.2, we have

at time t--to: /_., =/_c, + ?o

at time t=t: /_o, =/_o, +if, =/_co +ro +if,

On the other hand,/_o, =/_, + _, so,

/_¢, =/_o,-f t =/_,, +Y o +ff,-_ =/_, +fit +fo Xff: (22)

where, _, and _[ are the translational and angular deflection vectors at the attachment point

between the body j and the beam k, respectively, and the vector difference Yo -f, has been

expressed as the vector cross product of ro and _:, i.e. ks" =r o -_ = g xg:, which can also be

written in matrix form as

,or r'Iu:},
Arz -r, r. o _,

Therefore, Eq.22 can be written in matrix form as

(23)
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{P_o}j,= {&o} .o+[r]jk{u}j,+[Rlj,[r],,{u%. (24)

Differentiating Eq.24, we get the acceleration of the body j's center of gravity (C.G.),

//'{_o}j =[T],._{_},,+[R]j_[T]j_{ }j_ (25)

The angular acceleration of the body j is simply expressed as

{e}j=[T],,{ii'}jk (26)

STRUCTURAL DYNAMIC EQUATIONS

The equations of motion for the connected bodies and elements consist of blocks of terms,

assembled in an order dictated by the body and beam indices. The mass times the acceleration of

each body is related to the sum of forces caused by each beam element and each applied force.

(27)

where, Z{F}j, is the sum of the i-beam forces acting on the body j; _{f}:,, is the sum of the

m-applied forces acting on the body j, {g} is the gravitational vector. It is similar for the moment

equation,

[Jl,{e},=E[{M/j, +[r]0[R],[rl,,tF/,]+EtM}j. +E[r]_[R],.[r]j.{/}j. (28)
t n m

where, ,__,{M}_ is the sum of the i-beam moments acting on the body j; _[ T] o.[R] j, [T] j, {F}j,
I t

is the sum of the moments acting on the bodyj caused by the i-beam forces {F}ji; .__,{M}j, is
tl

the sum of the n-applied moments acting on the body j; and _[T]_[R]j,,[T]_,,,{f}j,,, is the sum of

the moments caused by the m-applied forces acting on the body j.

For the case of without applied forces and moments and neglecting gravity force, referring

to Eqs.25 and 26, we derive the following two equations. From the force equation,

[m]j([Tlj,{/iIj.k+[RIj,[T]jk{//'}j,)= _{F}:i
i

From the moment equation,

(29)

[JIj[T]_, {//'}jk = ___[{M}j_ +[ T]o.[R]j,[T]j_{F}j, ]
t

(30)

10



Let usexpressbothsidesof Eqs.29and30 in termsof themodeshapeparametervector,then,

and

(31)

(32)

Eqs.31 and32 are the structural dynamicequationsfor the most general configurations. To
demonstratetheoverallproceduremoreclearly,let's assumethat thereis only onebeamelement
attachedto thebodyj, thatis, i=k=-l. In thiscase,Eqs.31and32will besimplifiedas

[A_-]{0}, ={0} (33-1)
3x12 12xl

where,

[AM]{0},={0} (33-1)
3,'<12 12xl

' -'
= + +tR ,,trJ,,[PZ)

Two equations in Eq.33 may be combined as

[A] {0}_ ={0} (34)
6x12 12xl

where the system matrix [A] consists of the two block matrices [At] and [AM]. We can see that

the number of equations is less than the number of unknown parameters. The difference is six.

This is because there are six rigid-body degrees of freedom (d.o.f.s) for this particular one-body-

one-beam system. We should have, therefore, six constraint equations to fix the six rigid-body

d.o.f.s. For most common cases, six boundary conditions provide six constraint equations, which

can also be expressed in terms of the mode shape parameter vector {0}i, but the format of the

equations depends on what the specific boundary conditions are. Superimposing the constraint

equations into Eq.34, we obtain a new system dynamic equation

{o},={o} (35)
12x12 12xl

which has a full-rank system matrix [A--] for any values of circular frequencies except the natural

frequencies. Based on the condition that Det[A-] = 0, the natural frequencies of the system can be

determined.

For general configurations, the structural dynamic equation may become very

complicated, but the procedure to generate the equation is the same as stated. In general, for a

structural system consisting of J"bodies and I beams, the structural dynamic equation has the form

of

11



[A] {0}, ={0} (36)
(_.J)x02,1) 02*i)xl

The difference between the number of unknowns and the number of equations is exactly equal to

the number of riNd-body d.o.£s. To fix the rigid-body d.o.f.s, it is sometimes necessary to

consider the compatibility conditions besides the boundary conditions. The following two special

cases must be paid more attention.

(1) For the case that a rigid body may have more than one beam element attached as shown in

Fig.3 where two beams are attached to the body j, additional constraint equations must be added

to the system equation, Eq.36, which appears as for this particular example in the figure,

[A] {0} = {0} (37)
12x24 24xl ..

It is clear that 12 extra equations are needed to fit the two bodies' rigid-body d.o.f.s. While the

boundary conditions provides six equations, the other six equations must be found from the

compatibility conditions.

beam il

Figure 3 A Rigid Body Attached by Two Beam Elements

To account for the continuity in translational deflection at the two attachment points, the

constraint equation must be satisfied,

[T]j.,,{u}s.,,- {u'Ij.,,= [Tls .2{u}i.,2- (38)

The constraint equation for ensuring continuity in the angular deflection at the two attachment

points is

[rls.,, {u'}s.,,= [rls  (39)

Expressing Eqs.38 and 39 in terms of the mode shape parameter vectors of the two beams, we

have

and

([T]sa,[Q.], ' -[R]ss,[T]s.,,[Q.],l){O},, :([T]s.,2[Q,,],2-[R].f.,z[T]m[Q,],2){O},z (40)

[T] m[ Q,], 1{0},, = [T] m[Q,]a {O},z (41)

Combining Eqs.40 and 41, we find the six additional equations.

12



(2) For the casethat a beamconnectstwo rigid bodies at its two ends as shown in Fig.4
where beam i connects two bodies. More discussion must be addressed for this case. Apparently,

it seems that the system equation, Eq.36, had a full-rank system matrix, since Eq.36 appears as for

this particular .example in the figure,

[A] {0}, = {0} (42)
12x12 12xl

body jl

L-.......a body j2

Figure 4 A Beam Element Connecting Two Rigid Bodies

But, it is wrong. The problem is that body j_ and body j2 connect to the beam i at different

attachment points. Looking back to Eqs.14 to 17, and 31, we find that the components of the

system matrix [A], such as [Qu(z)], [Q,(z)], [PF(Z)], [I'M(Z)], are functions of the beam's

longitudinal coordinate z. Based upon the connection between body jl and beam i, a set of

equations, which is the same as Eq.34, can be found,

[Aj, (z i = 0)] {O}, = {0} (43-1)
6x12 12xl

Similar equation exists between body j2 and beam i,

[Aj2(z , = L_)] {0}_ ={0} (43-2)
6xl 2 12xl

The two equations in Eq.43 are not, however, independent since the system matrices [Ajl] and

[Aj2] are both related to the same beam element, beam i. It can be proven that these two matrices

are related by a constant matrix [O] which can be derived from beam i's PDEs, that is,

(44)

We can only, therefore, choose one set of equations from Eq.43, and the other six equations must

be fixed by the corresponding boundary conditions.

VERIFICATION EXAMPLES

1. EXAMPLE 1: Bending of a Cantilevered Beam.
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Lengthof theBeam
BendingStiffness
MassperLength

L=130.0 in.
EI=4xl 07Lb.in_.
m=0.09556Lb.seJ/in.

Theoretical formula for circular natural frequency: co, = , = 1.2106a,. The coefficients a,,

and the theoretical natural frequencies and the corresponding results from PDEMOD are listed in

Table 1.

No. of Modes a,

Tal_le 1 Results of Example 1

1 3.52 4.2613

2 22.0 26.6332

3 61.7 74.6940

4 121.0 146.4826

Natural Frequency
Theoretical Value PDEMOD

o_ _, I-Iz. _,i-iz
0.6782 0.6775

4.2388 4.246

11.8879 11.890

23.3134 22.570

38.5346 38.490242.1200200.0

2. EXAMPLE 2: Bending of a Clamped-Clamped Beam.

Length oftheBeam L=130.0 in.

Bending Stiffness EI=4xl07 Lb.in 2.

Mass per Length m=0.09556 Lb.secZ/in.

Theoretical formula for circular natural frequency: co. = a. = 1.2106a.. The coefficients a.,

and the theoretical natural frequencies and the corresponding results from PDEMOD are listed in

Table 2.

No. of Modes a,

Table 2 Results of Example 2

Natural Frequency

Theoretical Value

fn, HZ.

PDEMOD

COn

1 22.0 26.6332 4.2388 4.31

2 61.7 74.6940 11.8879 11.88

3 121.0 146.4826 23.3134 23.29

4 200.0 242.1200 38.5346 38.50

5 298.2 361.0009 57.4551 57.50

fn, Hz.

3. EXAMPLE 3: Bending of a Cantilevered Beam with a Tip-Mass M.

Length of the Beam L=3.077 ft.

Bending Stiffness EI=175.9644 Lb.ft 2.

14



MassperLength m=0.037Lb.sec2/ff(slug).
MassattheTip M=0.1538Lb.seJ/ft (slug).
EquivalentStiffnessof theBeam k=-3EUL3=18.1202Lb/ff.

Theoreticalformulafor the first circular naturalfrequency:to_ = M+ 0.23m "

natural frequency and the corresponding result from PDEMOD are listed in Table 3.

No. of Modes

Table 3 Results of Example 3

Natural Frequency

Theoretical Value PDEMOD

&Hz. &,Hz.
10.566 1.682 1.736

The theoretical

4. EXAMPLE 4: Torsion of a Cantilevered Beam.

Length of the Beam L=130.0 in.

Torsional Stiffaaess GI_=4x 107 Lb. in 2.

Polar Moment of Inertia per Length J,/L=0.2907 Lb.sec 2.

Theoretical formula for the circular natural frequency: co, = mr (.Iv / L)L2 - 283.4745n. The

theoretical natural frequency and the corresponding result from PDEMOD are listed in Table 4.

No. of Modes

Table 4 Results of Example 4

Natural Frequency
Theoretical Value PDEMOD

fo,I-Iz. fn,I-Iz.
283.4745 45.1164 45.10

566.9490 90.2328 90.19

CONCLUDING REMARKS

The computer software package PDEMOD is being developed to model the structural

dynamics of general spacecraft configurations by using the distributed parameter approach. This

paper provides the detailed description of the theoretical background used in the PDEMOD

formulation. A complex large space structure is considered as an assembly of flexible beam

elements and rigid bodies. Each flexible beam element is represented by four independent partial

differential equations which exhibit lateral bending in two axes, axial deformation, and torsion. A

system of partial differential equations is then formulated and connected at the elements'

boundaries based on the compatibility conditions. The equations of motion for any number of

rigid bodies are written in the frequency domain and in terms of the mode shape parameter

coefficients. The deflections, forces and moments for both ends of a single beam element can be

described in terms of the spatial derivatives of the solutions of the corresponding PDE's, further
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expressedin termsof the samesetof modeshapeparametercoefficients.Distributedparameter
modelscanthereforebegeneratedfor anythree-dimensionalconfigurationsdescribableby PDEs
joined at their boundaries.The verificationof the code hasbeenconducted,by comparingthe
resultswith.thoseexamplesfor whichtheexacttheoreticalsolutionscanbeobtained.

By investigatingthe potentialof the distributedparametermodelingtechnique,we expect
that the PDEMOD may be further developedin the following areas:(1) structural dynamics,
modal frequenciesand mode shapes;(2) parameterestimationof modal characteristics;(3)
structuraldamping;(4) control systemdynamics;and(5) designoptimization. In presentstage,
however, only the first of thesefunctionshas beencompletedand includedin the package.
Meanwhile,a massiveeffort is beingconductedwhich is expectedto modify the mathematical
modelandglobalsystemgeneratingprocedureto developmethodologyfor the control analysis
purpose.Insteadof usingthecoefficientsof the solutionfunctions,thetransfermatrix mayfinally
beused,whichprovidesa rriuchmoreconvenientway to describethe state-vectortransitionfrom
onepoint of thestructureto theother. All theseresearchoutputsareplannedto be contentsof
the rnodifiedversionof the package.It isalsonecessaryto conductadditionaltestingto establish
the accuracyof modelingdifferenttypesof realspacestructuressoasto movetheapproachfrom
academiccuriosityto apracticalalternativefor engineeringdesign.
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ABSTRACT

The modeling, analysis and control of a small manipulator system are simplified by

considering the links as rigid bodies. For large flexible manipulator systems, however, the

flexibility of the links and the joint compliance must be considered. To describe the kinematics

and the dynamic behavior of a flexible manipulator system, the common approach is to use

Lagrange's equations for both the rigid-body degrees of freedom (d.o.f.'s) and the dynamic

deflection d.o.f.'s caused by the flexibility. The generalized coordinates are associated with the

rigid-body d.o.f.'s of the links, and the modal coordinates associated with the flexibility d.o.f's.

The consequence is that a set of highly-coupled and non-linear simultaneous partial differential

equations is generated." :These,equations are so complex and lengthy that it is extremely difficult,

if not impossible, to expand.them manually even for a lower degree-of-freedom manipulator with

a lower number of modes assumed. For the flexible manipulators with greater complexity, the

dynamic analysis is literally forbidden by any practical manual symbolic derivations. The

computer symbolic derivation of flexible manipulator dynamics was then suggested by several
researchers.

For simplifying the analytical process to a realistically acceptable extent, this paper

conceives a new mathematical treatment for dynamic analysis of large flexible manipulator

systems. The essence of the idea is to separate the kinematics and flexibility analyses as two

independent but successive steps in a small time interval. Superposing the kinematic result and

the flexibility effect, the summation is viewed as the initial conditions of the next instant motion,

and the dynamic analysis succeeds to the next time interval. Repeating this process, the kinematic

analysis accompanying flexibility effect is accomplished for a required time period. As usual, the

kinematic analysis is based upon the rigid-body link assumption, and the Lagrange's equations are

set up for these less amount of rigid-body d.o.f.'s, which are manually manipulative. The

flexibility analysis for certain configuration of the manipulator system is conducted by using the

distributed parameter system approach, along with the application of the transfer matrix method.

Since an extremely complex analytical chore is resolved into two relatively simpler problems, the

complexity of the dynamic analysis of large flexible manipulator systems is mathematically

simplified. To demonstrate the applicability of the proposed methodology, an end-effector

vibration suppression problem for a large manipulator system has been investigated. The

manipulator system studied in this paper is a similitude of a NASA manipulator testbed for the

research of the berthing operation of the Space Shuttle to the Space Station. The computational
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resultsshowthattheproposedmethodisvery effectivefor end-effectorvibrationsuppressionof a
largeflexiblemanipulatorsystem.

1. INTRODUCTION

The modeling, analysis and control of a small manipulator system are simplified by

considering the links as rigid bodiest141. For large flexible manipulator systems, however, the

flexibility of the links and the joint compliance must be considered. The limitations of the rigid

link assumption in the formulation and analysis of large flexible manipulator dynamics were

investigated extensively. Several formulations can be found in the robotics literature, such as,

recursive or non-recursive Lagrangian assumed mode[5.71, generalized Newton-Euler methodtgj,

and Lagrangian using Raleigh-Ritz methodtgl, etc. To describe the kinematics and the dynamic

behavior of a flexible manipulator system, the common approach is to use Lagrange's equations

for both the rigid-body degrees of freedom (d.o.f.'s) and the dynamic deflection d.o.f.'s caused by

the flexibility. The generalized coordinates are associated with the rigid-body d.o.f.'s of the links,

and the modal coordinates associated with the flexibility d.o.f's. The consequence is that a set of

highly-coupled and non-linear simultaneous partial differential equations is generated. These

equations are so complex and lengthy that it is extremely difficult, if not impossible, to expand

them manually even for a lower degree-of-freedom manipulator with a lower number of modes

assumed. For the flexible manipulators with greater _omplexity, the dynamic analysis is literally

forbidden by any. practical manual, symbolic ,derivations. The computer symbolic derivation of

'. _.flexible manipulator dynamics was later suggested by several researchers. Some of them wrote a

..symbolic._.manipulation'.programtr,71, some of them : :suggested using the MATHEMATICA

_.,commercial software packagetlo], '--:The basic functionsof the symbolic manipulation program may

. include symbolic simplification of:polynomials and rational expressions, linearization of

trigonometric functions, automated evaluation of the relative Significance of terms and neglecting

the less significant terms, and even symbolic integration and differentiation. The application of

computer symbolic derivation techniques alleviates the difficulty in the dynamic analysis of large

flexible manipulator systems.

Forsimplifying the analytical process to a realistically acceptable extent, this paper

conceives a new mathematical treatment for dynamic analysis of large flexible manipulator

systems. The essence of the idea is to separate the kinematics and flexibility analyses as two

independent but successive steps in a small time interval. Superposing the kinematic result and

the flexibility effect, the summation is viewed as the initial conditions of the next instant motion,

and the dynamic analysis succeeds to the next time interval. Repeating this process, the kinematic

analysis accompanying flexibility effect is accomplished for a required time period. As usual, the

kinematic analysis is based upon the rigid-body link assumption, and the Lagrange's equations are

set up for these less amount of rigid-body d.o.f.'s, which are manually manipulative. The

flexibility analysis for certain configuration of the manipulator system is conducted by using the

distributed parameter system approach, along with the application of the transfer matrix

methodtn 1. Since an extremely complex analytical chore is resolved into two relatively simpler

problems, the complexity of the dynamic analysis of large flexible manipulator systems is

mathematically simplified.

To demonstrate the applicability of the proposed methodology, an end-effector vibration

suppression problem for a large manipulator system has been investigated. The manipulator



systemstudiedin this paperis asimilitudeof aNASA manipulatortestbedfor theresearchof the
berthingoperationof the SpaceShuttleto the SpaceStationt_21.Thesystemstudiedconsistsof
two flexible links and three revolutejoints which is assumedto be constrainedin the vertical
plane. Thereare only two rigid-bodyd.o.f.'s for this specificsystem. The two Lagrange's

equations are set up for the kinematic analysis, and the Runge-Kutta method is used to solve these

non-linear partial differential equations numerically. The flexibility of the two links includes the

lateral bending and axial elongation. The joint compliance is characterized by its torsional

stiffness coefficient. The transfer matrices for the flexible arms and revolute joints have been

constructed based on the partial differential equations. According to the compatibility conditions

at the connecting points, the global system dynamic equation can be derived. From the

corresponding boundary conditions, the characteristic equation for the global system is

determined, from which the natural frequencies and mode shape functions can be found.

Therefore, the transient response can be obtained. Joint moments are used as both displacement
and control actuators. Control law computation proceeds in the frequency domain based on the

pole-placement methodt_31. The computational results show that the proposed method is very

effective for end-effector vibration suppression of a large flexible manipulator system.

2. TWO-ARM FLEXIBLE MANIPULATOR SYSTEM

The manipulator system (Figure 1) studied in this paper is a similitude of a NASA

manipulator testbed for the research of the berthing operation of the space shuttle to the space

station (Figure 2). This research testbed is planned to be the model of the berthing process

constrained to move in the horizontal plane. Figure 2 illustrates the principal components of the

facility. The Space Station Freedom (SSF) Mobility Base is an existing Marshall Space Flight

Center (MSFC) Vehicle that has a mass of 2156.4kg. It represents a Space Station in the berthing

operation. This vehicle is suspended on the MSFC flat floor facility using low flow-rate air

bearings. The flexible appendage shown on the sketch will simulate solar panel disturbances. The

vehicle has cold gas reaction jets to allow translational maneuvering. It also has a single gimbal

for attitude control. The other vehicle, the Space Shuttle (SS) Mobility Base, is to be of similar

construction and will be attached to the SSF Mobility Base with a flexible, two-link manipulator

arm. The joints of the arms are driven by electric motors and are suspended by air bearings.

C

_/_J Jo B t

A

Fig. 1 The Manipulator System Studied in the Paper
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Fig.2 NASA MSFC Manipulator Testbed

The system studied consists of two flexible links and three revolute joints: shoulder joint

A, elbow joint B and wrist joint C. In the paper, it is assumed that the base frame XoYoZ0 is fixed

on the Shuttle assumed as a,rigid body, with Xo-axis along the joint A axis. The orientation of the

Y0 and Z0 axes about the joint axis X0 is chosen such that the resultant base frame forms a right-

hand coordinate system. The frame xly_zz for link 1 is defined as follows: the xl-axis coincides

with the joint axis of the joint A, the z_-axis is along the axis of link 1. The frame xaYaZa is fixed at

the joint B with x2-axis coinciding with the joint B axis, rotating with link 2, and z2-axis being

along the axis of the link 2. Since the dimension of the end-effector can not be in general

comparable with the dimensions of the two links, the end-effector will be abstracted as a rigid

body represented by a mass point as a whole at the joint C.

Each joint of the manipulator arms is driven by an individual actuator. The control

moments %, 'ca, and Zc are also acting on the revolute joints A, B, and C, respectively. The joint

compliance is characterized by its torsional stiffness coefficient. The corresponding input joint

torques are transmitted through the arm linkage to the end-effector, where the resultant force and

moment act upon the environment. The configuration of the corresponding riNd-body system of

the one with flexibility can be specified by the two joint angles V; and _2 as shown in Figure 1.

3. KINEMATIC ANALYSIS UNDER RIGID-BODY LINK ASSUMPTION

The common method for kinematic analysis under rigid-body link assumption in the

robotics society is based on the solution of Lagrangian equation,

(3.1)

where, Lagrangian function L is defined as L = T-U, T and U are the kinetic and potential energies

of the system, respectively. Q_ is the generalized force corresponding to the generalized

coordinate q_. For the two-arm system discussed in this paper, two rigid-body d.o.f.'s are chosen

as the two angles N, and N2 as shown in Figure 1, where points D and E are the mass centers of

the two arms. The kinetic and potential energies for both arms can be expressed as follows, for

arm 1:

• _1 m z "2
T_ =2m, v_ +2Iolf_ -6 'L]IF"

1

U t = _mlgL , sin IF', (3.2)
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For arm 2:

T2= m_v_+-_IE(¢2= m2[L_(o'_

1

U2= -_m:g(2L, sin _, + L2 sin _2)

1 LS :
+ L,Z._¢,,¢,_ cos(_,- _'s)+ _ s_'_]

(3.3)

where, m;, L_ are mass and length of the ith arm (i=l or 2). The Lagrangian function is then,

L = TI +T 2 -U,-U 2

1 2 "2

= _mtL _,(o,_+ lm=[L_¢l_ + L,L=(u',Ct 2 cos(y/,- Vs)+ -_ L=Vs]

1

--_g[(m I + 2m2)L 1sin _l +m2L= sin V:]
(3.4)

Substituting Lagrangian function L into Eq.3.1 and taking corresponding derivatives, we derive

the two Lagrangian equations:

1 1 1(-_m, + m=)L=, _, + m=L, Ls_' s cos(v,- gs)+ msL, L_(g _ sin(g, - Vs)

1

+KA _', - Ks V2 + _ (mr + 2m2)gLi cos Vt = rA - rB (3.5-1)

.lm2L, Ls_Ptcos(v I - Vs)+lm=L==_'= --_m=L,L_(t/_ sin(_, - _s)

1

+KBv2 +_msgL2 cosvs = r e -r c
(3.5-2)

Isolating "', and "'2 in each of the above two equations, Eq.3.5 can be reorganized as,

I 3 ] 2,. 3 S.2 I 23ml +ms -_m2 cos2 (V/I - V/2), L1V/1 +im2LI V/_sin2(v/l - v/s)+imsLILsv/s sin(v/1 - V/z)

)]Kn Vs 3+KA V/I -[1 ÷ 3LI COS(V/t - V/2 + (lml + ms )gLt cos V/I -_m2gLl c°s V/2 c°s(v/l - v/s)

2L s

3Li (rB - rc) c°s(v/I - V/s)
= ('/'.4 - _'B ) -

2L 2
(3.6-1)

2(_ml +ms) ] .... I .2

_m: cos(v/,- v/O- 3 co--sT_;_--_-s)Jq z-2v/s+(_m, +rn2)_ _ tan(v,-V/s)+,,r.n_L, L2V/=sin(v/,-v/s)

[- 2(_m_.2+__mm2)/-1!.. ' (_rna +m2)gL1 c°sYs

+Ka V/,-Jl+ m2/.._cos(V/ _ V/a) _V/:' +_'(_ +2ms)gL _ cosy/I -
COS(V/I -- V/2 )

I

2(3 m_ + ms)L_ (r n - r c)
= (r_ - r_) -

ms L2 cos(v _- V2 )
(3.6-2)



A set of two highly-coupledandnon-linearsimultaneouspartialdifferentialequationsin Eq.3.6
mustbesolvednumerically.Thewell-knownRunge-Kuttamethodis used.To do so,wedefine

x, = _,(t), x z = _,(t), x 3 = _2(t), x 4 = _k2(t ) (3.7)

then, a set of four first-order simultaneous equations is generated,

e, = Z 6) = x2

it2 = f2 (') = Alx_ sin 2(x I - x 3) + B lx4z sin(x i - x3) + Clx ` + Dlx 3 + E l cosx,
+F_cosx3 cos(x1 - x3) + G, cos(x, - x_) +H,

e_= A() = x,
(3.8)

x, = ]/'4(') = A2x_ tan(x1 - x3) + B2x_ sin(xl - x3) + C_xl + D2x3 + E2 cosxl

cos x 3 1

+F2 cos(x,- x3) +G2 cos(x,- x3) + H2

where,

3 2 I

Al=__rr_L_, I_=_-TmvL, LT, C,=_K__L, DI=K__a.[I+3L, cos(x,-x_) l
AI Al Ai Al 2L 2
I 3

T (ma + 2m2 )gL 1 -_m2gL 1 3L 1(r s - rc)
E I = - , FI - , G, = - , H I -

A, A 1 2LzA 1
I 3

A, = Igm, +m 2 - _m 2 cos :2(x I - x3)]L21

Z'A- _'B

and

(_1ml + m 2 )/_,12 m2L!L 2 K A
A 2 = _ , B2 = _--, C2 = _--,

A 2 2A 2 A 2

I

A_- 2(3 rni +m2)L ,D 2 = 11+ _n2--_z ]

I
(m1+ 2,,5 )g/_ (-_mI+ m_)g/_

E2=- , F_- ,
2A_ A 2

I 2(_rrfi +m2) ]L,

I
2(_m 1+ rrtz)/-n(r a -- re)

G 2 =-
m_L2t_

_"A -- "_B
H 2 -

A2

The iteration formula of the fourth-order Runge-Kutta method is as followso4]:

h

x_.s+I = x_.s +-_ (k,: + 2k_._ + 2k,. 3 + k_.4) i = 1, 2, 3 and 4 (3.9)

where

k,._ = f (x_.s; x_. s; x3.s; x,. s; t)
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h

h k h k h k _ h= + + + k,.=;t
k_.4 = f _( x_.j + hk_. 3; x_,j + hk2, 3;x3./ + hk3. 3, x 4.j + hk 4.3; t + h)

for the jth iteration, and h is the time interval. The accuracy of the method is in the order of h 5.

The motion of the rigid-body manipulator system can now be solved by using the iteration

formula, Eq.3.9.

4. FLEXIBILITY ANALYSIS USING TRANSFER MATRIX METHOD

In this paper, thejnclusion of the flexibility of the manipulator arms is treated by the

distributed parameter approach along with the transfer matrix method.- The function of the

transfer matrix is to relate the linear and angular deflections, forces and moments at one point in a

structure to those at another point. The derivation of the transfer matrices for bending and

elongation of a beam element is shown in Refs.15 and 16, but is summarized here. The two

flexible manipulator arms are represented by the Bernoulli-Euler equation and wave equation for

their bending and elongation characteristics, respectively. The BemouUi-Euler equation is in the

form of

_uy 1 _uy
+ -0 (4.1)

&4 2 _:
ay

where, ay2=ky/m, and ky=EI is the bending stiffness and m is the mass per length of the beam. The

elongation vibration is described by the wave equation

_u z 1 d2u,
-0 (4.2)

a z

where, az2=kz/m, and kz=EA is the axial stiffness. After separation of variables, Eqs.4.1 and 4.2

can be expressed in the spacial domain as

= o (4.3)

= o (4.4)

where, 13y4= o:/ay 2, Ira= o/a_, and o is the circular natural frequency. The solutions to Eqs.4.3 and

4.4 are

and

Uy(z) = A sinflyz + Bcosflyz + C sinhflyz + D coshflyz

Uz (z ) = M sin flzz + N cost3,z

(4.5)

(4.6)
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where, A, B, C, D, .hi, N are the modal participation coefficients.

defined, then

If the state vector, {0}, is

(4.7)

where, Uy and U_ are the displacements along y- and z-axes, Vx is the rotary angle of the beam

sections about x-axis, Fy and Fz are the shear and tensile forces respectively, Mx is the bending

moment about x-axis. The state vectors at the two ends of a beam element are related by a matrix

[_], that is,

{O(L)} : [_]{0(0)} (4.8)

where, the transfer matrix [_] involving bending and elongation of a beam element as described in

Ref.16 is given in Eq.4.9,

.

 -(cospyL

+ cosh flyL )

0

1

[®]= + inhpyL)

Ik yfl3y (sin flyL

+ sinh fly L )
0

1 2

[ 2kYfiy(-COS,By L+coshflyL)

1 1 1

0 2fly (sin,flyL 2kyfl3 (-sinflyL 0 2kyp2 (-cosflyL

+ inh,ByL) + i ,ByL) +coshpyL)
1

cos,BzL 0 0 _sin,Bz L 0
kz,Bz

1 1 1

2ky,B2v..(-cosflyL (sinflyL0 2 (c°s,ByL 0 2ky,By

+cosh,ByL) +coshflyL) +sinh,ByL)

1 2 1 1
2 fly (- sin,By L0 2 kyp_v(-c°sflyL 2 (c°s,By L 0

+ cosh,By L) + cosh,By L) + sinhfly L)

-kz,Bz sinpz L 0 0 cosflz L 0

i 1 1

0 2kyfly(-sin,BY L 2,By (sin_yL 0 2 (c°s'fly L

+ sirth fly L ) + sinh fly L ) + cosh p y L )

(4.9)

in which the elements at the 2nd and 4th rows and colurnns reflect the elongation, the others for

the bending. Because the two arms are not in the same orientation, it is necessary to account for

the alignment of the two arms. The relationship of the two local coordinate systems can be

described by a coordinate transformation matrix [T2J, that is,

where,

.['cos(y2,y, )

(4.10)



The transfer matrix of a revolute joint R has been derived in Ref. 11. A revolute joint R is

abstracted as a massless torsional spring with spring constant kvR through which two elements 'h"

and 'b" are connected. The actuator fixed at the joint R will produce a control moment xR. The

state vector {e}, at the end of element 'h"is related to the state vector {e}_ at the end of element

"b" through the transfer matrix [_] of the joint R by

/ol.--[®.llol_+{_.}_. (4.11)

where, the transfer matrix [@R] of the joint R is given by

[r_] 1
• [r_,l I

L lJ
(4.12)

and the control-influence vector,

r 1 ]r

= 0 0-1]{BR} L0 0 IRs:+kv,"
(4.]3)

..Applying the general expression, Eq.4.11, to .the joints A and B, we find out that,

and

{O(z,=O)}o=[®.l{o<z,=o)},+/B.},-.

{o(_,=L,)},=[_..l{o<_:=o)}+{..}_.

(4.]4)

(4.15)

where, the subscripts 0, 1 and 2 stand for the Shuttle Base, arm 1 and arm 2, respectively.

5. SYSTEM DYNAMIC EQUATIONS FOR A SPECIFIC CONFIGURATION

For a specific configuration at an arbitrary time instant, the system dynamic equation was

derived in detail in Ref. 11, that is

{o(_:=L:)},=[Al{O(z,- O)}o+[B]lfl (5.1)

where, the system matrix [A]=[_z][q)B]'l[_l][q)A]'_; the control-influence matrix

[B]=[-[_2][_B]'I[_I][_A]'I{BA},-[q):][q)B]'l{BB},-{Bc}]; the control vector {x}=[ zA, zB, Xc] r.

The element transfer matrices [_.]'s and control influence vectors {B.}'s are associated with the

two links and the three joints, respectively, recognized by the corresponding subscripts.

The dynamic properties at a certain configuration without control actions are the inherent

properties of the system, which are varied with the change in configuration when the manipulator
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systemis in motion. Themethodto derivetheseinherentdynamicpropertiesis straightforward.
Considertheboundaryconditions(B.C.'s)of thesystemin Figure 1,at thefixed end(attachment

t

point to the Shuttle Base),

Uy 0 (Z I = 0) = Ug 0 (Z I = 0) = kYlJx0 (Z| _-_ 0) -" 0 (5.2)

at the free end (end-effector),

(5.3)

Applying the B.C.'s, Eqs.5.2 and 5.3, to Eq.5.1 without control action, two equations can be

derived,

and

(5.4)

LM.(z,:O)Jo
=0 (5.5)

. where, [Az2] and [A22] are the block matrices of the matrix [A]. The condition for Eq.5.5 having
non-trivial solution is that

DETIA 22]=0 (5.6)

Eq.5.6 is the characteristic equation of the system from which the natural frequencies c0's can be

derived. After obtaining the natural frequencies from Eq.5.6, we can derive the mode shape

functions from the equation below,

[G] {(}=O (5.7)

The detailed derivation of Eq.5.7 can be found in Ref. 16. The vector {_} consists of the modal

participation coefficients for the beams 1 and 2 appearing in Eqs.4.5 and 4.6, that is,{Cj}=[A1, Bl,

C1, DI, MI, NI, A2, B2, C2, D2, M2, N2] r. Normalizing Eq.5.7 with N2=l, Eq.5.7 can be solved to

obtain the modal participation coefficients for the two beams, thereby the mode shape functions

can be obtained based on the solution equations, that is, Eqs.4.5 and 4.6, for the ith beam,

and

Uy,(zj)= A, sinfl_,,z, +Bicos,flyz _ +Cjsinh,flyz_ +D_cosh,Byz_ (5.8)

U,, (z,)= M, sin/3,,z, + N, cosfl,,zj (5.9)

It is assumed that the control actions are related to the feedbacks of the nodal displacements and

velocities, that is,

10



re=[k.]{4za=0)}2=[ks,+kBS,ks,+kBS,k.+k..S,O,o,ol{o(z==O)}= (5.11)
_ =tk_{_,==_)}==[,,_.+,,_s,k_,+,,os,k_+kos,o,o,o]{+==a)}= (,.-)

Inserting the control actions into Eq.5.1 and combining the similar terms, the closed-loop system

dynamic equation follows,

{co==L=)}==[A--l{_z,=% (5.13)

where,[A-]=[_=1[_1-'[_.,][_.1-',and
[_.l=[<1+{B.}[k.],[_.1=[*_1+{B.}[k.],[_=1 t_l+{B_}[k_])-'[.=].

By applying the B.C.'s, Eqs.5.2 and 5.3, the closed-loop characteristic equation, DEI[A:=] = O,

can be derived, where, [7/22] is a block matrix of the matrix [A--], from which the closed-loop poXes

can be found.

6. SUPERPOSING RIGID-BODY KINEMATICS AND FLEXIBILITY EFFECT

This.paper conceives a new,mathematical treatment for dynamic analysis of large flexible

, manipulator systems. •The:essence of the idea is to separate the kinematics and flexibility analyses

as two independent but successive steps in a small time interval. Section 3 of this paper gave the

kinematic analysis assuming a rigid-body link based on the Lagrangian equation method, using the

Runge-Kutta numerical approach. Sections 4 and 5 provided a method for system dynamic

analysis due to flexibility at a specific configuration of the manipulator system. Compared with

the macroscopic motion of the manipulator system, the motion resulted from flexibility is only a

"microcosmic" motion. Only after a long-term effect is accumulated will the flexibility effect be

significant. It allows us, therefore, to make the assumptions: at a certain configuration of the

manipulator system, the deflections and the rates of deflection of the arms due to flexibility are

small, and the elongation deformations are high-order infinitesimal so that they are neglected.

Superposing the rigid-body motion and the motion due to flexibility, we have

_,(zt,t) = gt(t)+dg,(z,,t) and -#2(z2,t)=V=(t)+dga(z2,t) (6.1)

where, the small perturbation can be assumed as (cf. Fig.3),

dv,(zt,t ) 1 (z,,t) and dg2(z2,t ) ly2(z2,t ) (6.2)
= g--_Yl = Z2

Therefore, the two generalized coordinates defining the instantaneous motions of the two arms in

the Lagrangian equation, Eq.3.5, would be

11
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Fig.3 Small Perturbation of the Angles

1 1
_,(l)=-_,(z,,t)---y,(z,,t) and _(t)=-_z(z2,t)---y2(z2,t) (6.3)

z! z 2

Substituting Eq.6.3 into Eq.3.6 and neglecting high-order infinitesimals, we can express the

Lagrangian equations in terms of--, and _ as follows,

_, = AI_ _ sin2(-_, - _2) + B,_2--5 sin(_, - _2) + C,_, + D,_ 2 + E, cos_,

1

+F i cos_= cos(_, - _2) + G, cos(_, - _2)+ H, + _-ly ,

_z = A2_ tan(_,- _2)+ B2_22 sin(_,- _2)+C2_, + D2_2 + E2 cos_,

cos _"-"2 1 1
+F 2 cos(_,- _) +G_cos(_,- _) +_ +-_y_

(6.4-1)

(6.4-2)

Defining w,=_,, w 2=_t,, w 3=_2, and w 4=_,

equations is obtained which is similar to Eq.3.8,

a set of four first-order simultaneous

"1_1 = W 2

vO2 = A,w_ sin2(w,-w3)+ Btw _ sin(w,-w3)+C_w , + D,w 3 +E l cosw,
1

+F l cosw 3 cos(w,-w3)+G , cos(w,-w3)+ H, + Zy ,

w3 .= w4

w4 = A2w_ tan(w,-w3)+ B_w_ sin(w,-w3)+Czw , + Dzw 3 + E 2 cosw,

cosw 3 1 1
+Fz +Gz +//2 + _--J:2

COS(Wi - _3) COS(WI - _3) Z2

(6.5)

The only difference between Eq.6.5 and Eq.3.8 is the inclusion ofj_ and J)2, which represents the

effect of flexibility, and can be solved based on the formulation described in Sections 4 and 5 as

long as the instantaneous configuration is specified and the motion at the end of previous time

12



interval is known. By using the Runge-Kutta procedure in Section 3, Eq.6.5 can be solved

numerically. A solution is thus obtained which represents the superposition of rigid-body

kinematics and flexibility effect.

7. SIMULATION EXAMPLES

As mentioned earlier, the manipulator system studied here is a similitude of a NASA

MSFC manipulator testbed for the research of the berthing operation of the Space Shuttle to the

Space Station. The mechanical properties of the system are listed in Table 1.

Table 1 Mechanical Properties of the Two-arm Manipulator System

Beam Length, L, (in.)

Sectional Area, A, (in. z)

Second Moment of the Cross Section, I, (in. 4)

Modulus of Elasticity, E, (psi)

Mass per length, (slug/in.)

Beam 1 Beam 2

" 120.060.0

50.27 12.57

107.0 107.0

201.06 12.57

0.1526 0.0382

The initial conditions of the system are assumedat VI = 90", V2 = 00, V1 = 0, and V= = 0.

•First, the difference between the results of under rigid-body link assumption and with flexibility

, effects are noted by three examples as shown in Fig.4.. These examples exhibit the motions of the

manipulator system from the specified initial conditions under the actions of gravity force, inertia

force, and the constant joint control moments za, zB, and Xc as shown in each figure. The solid

lines represent the motions under rigid-body link assumption, while the dashed lines represent the

motions with flexibility effects. For clarity, the vibratory wave shapes for flexible beams were

neglected in the figures.

Next, several examples demonstrate the effectiveness for end-effector vibration

suppression. The motion of the manipulator system is a continuous process, which stimulates

vibration of the system at every time instant. The vibration suppression action continues

throughout the whole process without interruption. The joint control moments will always

change themselves based upon the control law given in Eqs.5.10 to 5.12. They play the roles of

both actuating the manipulator system to fulfill a certain task and alleviating vibratory fluctuation

while the system is operating•

B ..._2

-- VITHFL[XIBILIIY
-- -- VITHOUI_'LCXIOILIIY

IlK INICRVAI._:I S£C

JOINT A Z C

_'T_BS) I 2 3
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"'II'_N 'Nrc;v?s' l 's_c C ,

• I'1

• \

\',, //

L.atN_ 1 . i • i • iI
Fig.4 The Difference Between the Results Of Under Rigid-Body Link Assumption

And With Flexibility Effects

Figs.5 to 7 demonstrate the effectiveness for the end-effector vibration suppression at

instantaneous positions 1, 2, 3 as shown in Fig.4, with the initial joint control moments XA=I tt-

klb, xB=2 tt-klb, and "Cc=4 ft-klb. Both time histories without control (lett) and with control

(right) are Shown in the figures for comparison. The vibratory motion of the end-effector is

described in the second link's coordinate system, x2y2z2, as defined in Section 2. The upper two

figures in Figs.5 to 7 represent the results in y2-direction, the lower two in z2-direction. The

instantaneous vibration can be suppressed in about 0.3 second for all positions studied.

8. CONCLUDING REMARKS

A new mathematical treatment for dynamic analysis of large flexible manipulator systems

is derived. An extremely complex analytical chore is resolved into two relatively simpler

problems, the complexity of the dynamic analysis of large flexible manipulator systems is,

therefore, mathematically simplified to a realistically acceptable extent for practical manual

symbolic derivation of the equations of motion. Since the equation of motion is a set of highly-

coupled and non-linear simultaneous partial differential equations, the Runge-Kutta numerical

procedure has been used to solve the equations. As an example, the vibration suppression

problem of a similitude of a NASA MSFC manipulator testbed has been investigated in the paper.
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The computationalresults show that the proposed method is very effective for end-effector

vibration suppression for a large flexible manipulator system.
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